Section 3

1. Use induction to prove that the following equalities are true for all positive integers n :
(a) $\sum_{i=1}^{n}(4 i-3)=n(2 n-1)$
(b) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
(c) $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
(d) $\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$
(e) $\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}$
2. Prove that for every positive integer n greater than $2,3^{n}>n^{2}$.
3. Use strong induction to prove that a class of $n \geq 12$ students can be broken into groups where each group has exactly 4 or 5 members.
4. Let m be an even natural number. Find natural numbers x and y such that $m=(x+y)^{2}+3 x+y$. Example: for $m=6, x=0$ and $y=2$ satisfy the equation. Try a few cases to find a pattern and then use induction to prove that the pattern works.
Hint: Let $m=2 n$, where $n \in \mathbb{N}$. Use induction to find x_{n} and y_{n} such that $2 n=\left(x_{n}+y_{n}\right)^{2}+3 x_{n}+y_{n}$.
5. Use induction to show that for any natural number $n \geq 1$, given pairs $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ of integer numbers, there exist integer numbers c and d such that
$\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots\left(a_{n}^{2}+b_{n}^{2}\right)=c^{2}+d^{2}$.
Hint: $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}$.
6. Suppose n is a positive natural number whose prime factorization is: $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, where $p_{1} \ldots p_{k}$ are natural, distinct prime numbers, and $a_{1}, \ldots a_{n}$ are positive natural numbers. Use induction to show that the number of divisors of n is $\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{k}\right)$. Example: $n=12=2^{2} \times 3$ has exactly $3 \times 2=6$ divisors.
