Section 2

- 1. Negation and DeMorgan's Law
 - (a) Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.
 - (b) Use a truth table to show that the negation of P ⇒ Q is P ∧ ¬Q, in another words, ¬(P ⇒ Q) is logically equivalent to P ∧ ¬Q. What is the negation of P ⇔ Q?
 - (c) Consider the false statement "For each x in \mathbb{R} . $x^2 \ge x$ " (consider 0 < x < 1). What is the negation of this statement? Is it "For each x in \mathbb{R} . $x^2 < x$ "? Why not? Let P(x) be the proposition " $x^2 \ge x$ " with x taken from the universe of real numbers \mathbb{R} . Then our original statement is succinctly written as $\forall x.P(x)$. How do we negate this with DeMorgan's Law?
- 2. Suppose we're considering the domain of just 2 numbers $S = \{0, 1\}$. Try to re-state the following propositions without using any quantifiers. For example, $\forall x.P(x)$ can be re-formulated as $P(0) \land P(1)$.
 - (a) $\exists x.P(x)$
 - (b) $\neg \exists x. P(x)$
 - (c) $\forall x. \exists y. P(x, y)$
 - (d) $\exists x.P(x) \lor (\forall y.Q(x,y))$
 - (e) $\neg(\forall x.\exists y.P(x) \Rightarrow Q(y))$
- 3. Rewrite the following statements in propositional logic. (Use \mathbb{N} to denote the set of natural numbers and \mathbb{Z}^+ to denote the set of positive integers.)
 - (a) For all natural numbers n, n is odd if n^2 is odd.
 - (b) For all natural numbers $n, n^2 n + 3$ is odd.
 - (c) There are no positive integer solutions to the equation $x^2 y^2 = 10$.
- **4.** Let $x_0 = 1$ and $x_1, x_2, x_3 > 0$. Prove by contrapositive that, if $x_3 > 8$, then $\exists i \in \{0, 1, 2\}, \frac{x_{i+1}}{r_i} > 2$.
- **5.** Prove that $\forall x \in \mathbb{N}$, x is divisible by 3 if and only if the sum of the digits of x is divisible by 3.
- 6. Here is an extract from Lewis Carroll's treatise Symbolic Logic of 1896:
 - (I) No one, who is going to a party, ever fails to brush his or her hair.
 - (II) No one looks fascinating, if he or she is untidy.
 - (III) Opium-eaters have no self-command.
 - (IV) Everyone who has brushed his or her hair looks fascinating.
 - (V) No one wears kid gloves, unless he or she is going to a party.
 - (VI) A person is always untidy if he or she has no self-command.
 - (a) Write each of the above six sentences as a quantified proposition over the universe of all people. You should use the following symbols for the various elementary propositions: P(x) for "x goes to a party", B(x) for "x has brushed his or her hair", F(x) for "x looks fascinating", U(x) for "x is untidy", O(x) for "x is an opium-eater", N(x) for "x has no self-command", and K(x) for "x wears kid gloves".
 - (b) Now rewrite each proposition equivalently using the *contrapositive*.
 - (c) You now have twelve propositions in total. What can you conclude from them about a person who wears kid gloves? Explain clearly the implications you used to arrive at your conclusion.