
CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil PA 1

Due Friday, July 1, 11:59pm
You must complete this programming assignment on your own. Remember that you have three slip days
that you can allocate between the three programming assignments. Note that there is a short grace period
(on the order of minutes, not hours) after the above deadline to account for clock discrepancies, last minute
submission hiccups, etc.

Overview
As we have seen in class, there is a strong connection between induction and recursion. Both involve
breaking down a problem or proof in terms of smaller instances. Both have base cases and an inductive or
recursive step. In this programming assignment, we further explore this connection by writing a recursive
program to generate direct proofs for a particular claim. The structure of this program will follow the general
structure of an inductive proof of that claim.

Consider the following theorem:

Every natural number n > 1 can be written as a product of primes.

An inductive proof of this theorem is provided in Note 3 (page 25). Given a particular n > 1, your job is
to generate a direct proof that n can be written as a product of primes. For example, if given n = 5, your
program should generate output similar to the following:

5 is prime, so it is a product of a single prime.

On the other hand, given n = 60, your program should output:

In order to prove that 60 is a product of primes
we prove that 6 and 10 are products of primes.

In order to prove that 6 is a product of primes
we prove that 2 and 3 are products of primes.

2 is prime, so it is a product of a single prime.
3 is prime, so it is a product of a single prime.
Having proven that 2 and 3 are products of primes,

we conclude that 6 = 2 * 3
is a product of primes.

In order to prove that 10 is a product of primes
we prove that 2 and 5 are products of primes.

2 is prime, so it is a product of a single prime.
5 is prime, so it is a product of a single prime.

CS 70, Summer 2011, PA 1 1



Having proven that 2 and 5 are products of primes,
we conclude that 10 = 2 * 5
is a product of primes.

Having proven that 6 and 10 are products of primes,
we conclude that 60 = 6 * 10
is a product of primes.

The generated proof breaks 60 into 6 and 10, proves that 6 and 10 can each be written as a product of primes,
and concludes as a result that 60 = 6×10 can also be written as a product of primes.

For this assignment, you must write the direct proof generating program as described above. Your program
must use recursion to generate the proof in order to receive any credit. You may use any of the following
programming languages: Scheme, Java, Python, C, or C++. (Note that though you may use any of these
languages, we can only provide you skeletons in a subset of the languages. It may be beneficial to look over
a skeleton for another language if one is not available in the language of your choice.) You have access to
stk, javac and java, python, gcc, and g++ from your class accounts. For the latter four languages,
your program should take a single integer n > 1 as a command line argument and then print out a direct
proof that n can be written as a product of primes. Skeletons for Scheme, Java, and Python with some useful
auxiliary functions are provided at http://www.cs.berkeley.edu/~kamil/cs70/pa/pa1/.

Your program need not perform any error checking (e.g. that the given input is a positive integer greater
than 1). You may subdivide a given integer n into any two factors you like (e.g. 60 = 6×10, 60 = 5×12,
60 = 4×15, 60 = 3×20, or 60 = 2×30). Stylistically, it is preferable that you use the factors closest to

√
n,

though that is not required for this assignment. It is perfectly acceptable to repeat the proof for a particular
factor m of n if n is divisible by a power of m, as demonstrated by the multiple occurrences of m = 2 in the
sample output for n = 60.

Special Notes for Scheme
If you use Scheme, you should instead define a function called prove that takes in a single argument. When
called with an integer n > 1, the function should display a direct proof that n can be written as a product of
primes.

Some built-in Scheme functions that may prove helpful are string-append, number->string, and
display.

Submission Instructions
You must submit your assignment electronically with the following command from your class account:

submit pa1

Two files are required in the directory from which you run the above command. A README file described
below and a ZIP archive called pa1.zip. This archive should include all files necessary to compile and
run your program. You can construct this archive using the following command:

zip pa1.zip <file1> ... <fileN>

If you are adding directories, you will need to pass the -r flag to zip. As a sanity check, run

CS 70, Summer 2011, PA 1 2



unzip -l pa1.zip

afterwards to make sure that all intended files are included in the archive. We will not be able to grade
incomplete submissions, so make sure to double check that all files are included.

The README File
In your README file, include explicit instructions on how to build and run your code. In addition, answer
the following questions:

(a) Does your program use the same base case as the inductive proof in the notes? If not, explain what
you changed and why.

(b) Did this assignment help you in understanding induction?

(c) How long did this assignment take you to complete?

CS 70, Summer 2011, PA 1 3


