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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 1

Course Outline
CS70 is a course on discrete mathematics and probability theory, especially tailored for EECS students. The
purpose of the course is to teach you about:

• Fundamental ideas in computer science and electrical engineering:
- Boolean logic
- Modular arithmetic, public-key cryptography, error-correcting codes, secret sharing protocols
- The power of randomization (“flipping coins”) in computation: load balancing, hashing, inference,
overcoming noise in communication channels
- Uncomputability and the halting problem

Many of these concepts form a foundation for more advanced courses in EECS. science.

• Precise, reliable, powerful thinking:
- Proofs of correctness. These are essential to analyzing algorithms and programs
- Induction and recursion
- Probability theory

• Problem solving skills:
- These are emphasized in the discussion sections and homeworks.

Course outline (abbreviated):

• Propositions, propositional logic and proofs

• Mathematical induction, recursion

• The stable marriage problem

• Modular arithmetic, the RSA cryptosystem

• Polynomials over finite fields and their applications: error-correcting codes, secret sharing

• Probability and probabilistic algorithms: load balancing, hashing, expectation, variance, Chebyshev
bounds, conditional probability, Bayesian inference, law of large numbers, Central Limit Theorem.

• Diagonalization, self-reference, and uncomputability

Getting Started
In order to be fluent in mathematical statements, you need to understand the basic framework of the language
of mathematics. This first week, we will start by learning about what logical forms mathematical theorems
may take, and how to manipulate those forms to make them easier to prove. In the next few lectures, we will
learn several different methods of proving things.
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Propositions
A proposition is a statement which is either true or false.

These statements are all propositions:

(1)
√

3 is irrational.
(2) 1+1 = 5.
(3) Julius Caesar had 2 eggs for breakfast on his 10th birthday.

These statements are clearly not propositions:

(4) 2+2.
(5) x2 +3x = 5.

These statements aren’t propositions either (although some books say they are). Propositions should not
include fuzzy terms.

(6) Arnold Schwarzenegger often eats broccoli. (What is “often?”)
(7) Barack Obama is popular. (What is “popular?”)

Propositions may be joined together to form more complex statements. Let P, Q, and R be variables rep-
resenting propositions (for example, P could stand for “3 is odd”). The simplest way of joining these
propositions together is to use the connectives “and”, “or” and “not.”

(1) Conjunction: P∧Q (“P and Q”). True only when both P and Q are true.

(2) Disjunction: P∨Q (“P or Q”). True when at least one of P and Q is true.

(3) Negation: ¬P (“not P”). True when P is false.

Statements like these, with variables, are called propositional forms. If we let P stand for the proposition
“3 is odd,” Q stand for “4 is odd,” and R for “5 is even,” then the propositional forms P∧R, P∨R and ¬Q
are false, true, and true, respectively. Note that P∨¬P is always true, regardless of the truth value of P. A
propositional form that is always true regardless of the truth values of its variables is called a tautology. A
statement such as P∧¬P, which is always false, is called a contradiction.

A useful tool for describing the possible values of a propositional form is a truth table. Truth tables are the
same as function tables. You list all possible input values for the variables, and then list the outputs given
those inputs. (The order does not matter.)
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Here are truth tables for conjunction, disjunction and negation:

P Q P∧Q
T T T
T F F
F T F
F F F

P Q P∨Q
T T T
T F T
F T T
F F F

P ¬P
T F
F T

The most important and subtle propositional form is an implication:

(4) Implication: P =⇒ Q (“P implies Q”). This is the same interpreted as “If P, then Q.” It is
logically equivalent to (¬P)∨Q. In other words, P =⇒Q is a more concise (and possibly more
intuitive) way of writing (¬P)∨Q, but it has exactly the same meaning.

In the expression P =⇒ Q, P is called the hypothesis of the implication, and Q is the conclusion. 1

Examples of implications:

If you stand in the rain, then you’ll get wet.
If you passed the class, you received a certificate.

An implication P =⇒ Q is false only when P is true and Q is false. For example, the first statement would
be false only if you stood in the rain but didn’t get wet. The second statement above would be false only if
you passed the class yet you didn’t receive a certificate.

Here is the truth table for P =⇒ Q:

P Q P =⇒ Q ¬P∨Q
T T T T
T F F F
F T T T
F F T T

Note that P =⇒ Q is always true when P is false. This means that many statements that sound nonsensical
in English are true, mathematically speaking. Examples are statements like: “If pigs can fly, then horses can
read” or “If 14 is odd then 1+2 = 18.” When an implication is stupidly true because the hypothesis is false,
we say that it is vacuously true. Note also that P =⇒ Q is logically equivalent to ¬P∨Q, as can be seen
from the above truth table.

1P is also called the antecedent and Q the consequent.
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P =⇒ Q is the most common form mathematical theorems take. Here are some of the different ways of
saying it:

(1) If P, then Q.
(2) Q if P.
(3) P only if Q.
(4) P is sufficient for Q.
(5) Q is necessary for P.

If both P =⇒ Q and Q =⇒ P are true, then we say “P if and only if Q” (abbreviated P iff Q). Formally, we
write P ⇐⇒ Q. P ⇐⇒ Q is true only when P and Q have the same truth values.

For example, if we let P be “3 is odd,” Q be “4 is odd,” and R be “6 is even,” then P =⇒ R, Q =⇒ P
(vacuously), and R =⇒ P. Because P =⇒ R and R =⇒ P, we have P ⇐⇒ R (i.e., P if and only if R).

Given an implication P =⇒ Q, we can also define its

(a) Contrapositive: ¬Q =⇒¬P
(b) Converse: Q =⇒ P

The contrapositive of “If you passed the class, you received a certificate” is “If you did not get a certificate,
you did not pass the class.” The converse is “If you got a certificate, you passed the class.” Does the
contrapositive say the same thing as the original statement? Does the converse?

Let’s look at the truth tables:

P Q ¬P ¬Q P =⇒ Q Q =⇒ P ¬Q =⇒¬P P ⇐⇒ Q
T T F F T T T T
T F F T F T F F
F T T F T F T F
F F T T T T T T

Note that P =⇒ Q and its contrapositive have the same truth values everywhere in their truth tables; propo-
sitional forms having the same truth values are said to be logically equivalent, written “≡”. Thus we may
write (P =⇒ Q) ≡ (¬Q =⇒ ¬P). Many students confuse the contrapositive with the converse: note that
P =⇒ Q and ¬Q =⇒¬P are logically equivalent, but P =⇒ Q and Q =⇒ P are not!

When two propositional forms are logically equivalent, we can think of them as “meaning the same thing.”
We will see next time how useful this can be for proving theorems.

Quantifiers
The mathematical statements you’ll see in practice will not be made up of simple propositions like “3 is
odd.” Instead you’ll see statements like:

(1) For all natural numbers n, n2 +n+41 is prime.
(2) If n is an odd integer, so is n3.
(3) There is an integer k that is both even and odd.
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In essence, these statements assert something about lots of simple propositions all at once. For instance, the
first statement is asserting that 02 + 0+ 41 is prime, 12 + 1+ 41 is prime, and so on. The last statement is
saying that as k ranges over every possible integer, we will find at least one value for which the statement is
satisfied.

Why are the above three examples considered to be propositions, while earlier we claimed that “x2 +3x =
5” was not? The reason is these three examples are in some sense “complete”, where “x2 + 3x = 5” is
“incomplete” because whether it is true or false depends upon the value of x.

To explain it another way, in these three examples, there is an underlying “universe” that we are working in.
The statements are then quantified over that universe. To express these statements mathematically we need
two quantifiers: The universal quantifier ∀ (“for all”) and the existential quantifer ∃ (“there exists”). The
three statements above can then be expressed using quantifiers as follows2

(1) (∀n ∈ N)(n2 +n+41 is prime).
(2) (∀n ∈ Z)(n is odd =⇒ n3 is odd).
(3) (∃n ∈ Z)(n is odd∧n is even).

Here N= {0,1,2, . . .} is the set of natural numbers and Z= {. . . ,−2,−1,0,1,2, . . .} is the set of integers.

As another example, consider the statement “some mammals lay eggs.” Mathematically, “some” means “at
least one,” so the statement is saying “There exists a mammal x such that x lays eggs.” If we let our universe
U be the set of mammals, then we can write: (∃x∈U)(x lays eggs). (Sometimes, when the universe is clear,
we omit U and simply write ∃x(x lays eggs).)

Some statements can have multiple quantifiers. As we will see, however, quantifiers do not commute. You
can see this just by thinking about English statements. Consider the following (rather gory) example:

Example:

“Every time I ride the subway in New York, somebody gets stabbed.”
“There is someone, such that every time I ride the subway in New York, that someone gets
stabbed.”

The first statement is saying that every time I ride the subway someone gets stabbed, but it could be a
different person each time. The second statement is saying something truly horrible: that there is some poor
guy Joe with the misfortune that every time I get on the New York subway, there is Joe, getting stabbed
again. (Poor Joe will run for his life the second he sees me.)

Mathematically, we are quantifying over two universes: T = {times when I ride on the subway} and P =
{people}. The first statement can be written: (∀t ∈ T )(∃p ∈ P)(p gets stabbed at time t). The second
statement says: (∃p ∈ P)(∀t ∈ T )(p gets stabbed at time t).

Let’s look at a more mathematical example:

Consider

1. (∀x ∈ Z)(∃y ∈ Z)(x < y)

2. (∃y ∈ Z)(∀x ∈ Z)(x < y)

2Note that in a finite universe, we can express existentially and universally quantified propositions without quantifiers, using
disjunctions and conjunctions respectively. For example, if our universe U is {1, 2, 3, 4}, then (∃xP(x)) is logically equivalent to
P(1)∨P(2)∨P(3)∨P(4), and (∀xP(x)) is logically equivalent to P(1)∧P(2)∧P(3)∧P(4). However, in an infinite universe, such
as the natural numbers, this is not possible.
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The first statement says that, given an integer, I can find a larger one. The second statement says something
very different: that there is a largest integer! The first statement is true, the second is not.

A word on notation: some mathematicians write quantified statements using a slightly different notation.
Instead of something like (∀n ∈ N)(n2 ≥ 0), you might see it written as ∀n ∈ N . n2 ≥ 0. Either of these
gets the job done—it’s simply a matter of stylistic preferences. Finally, sometimes you might see people
write ∀n n2 ≥ 0 or (∀n)(n2 ≥ 0). This way of writing it is potentially ambiguous, because it does not make
the universe explicit; it should only be used in cases where there is no possibility of confusion about the
universe being quantified over.

Quantifiers and Negation
What does it mean for a proposition P to be false? It means that its negation ¬P is true. Often, we will need
to negate a quantified proposition (the motivation for this will become more obvious next lecture when we
look at proofs). For now, let’s look at an example of how to go about this.

Example:

Assume that the universe is U = {1,2,3,4} and let P(x) denote the propositional formula “x2 > 10.” Check
that ∃xP(x) is true but ∀xP(x) is false. Observe that both ¬(∀xP(x)) and ∃x¬P(x) are true because P(1) is
false. Also note that both ∀x¬P(x) and ¬(∃xP(x)) are false, since P(4) is true. The fact that each pair of
statements had the same truth value is no accident, as the formulae

¬(∀xP(x))≡ ∃x¬P(x)

¬(∃xP(x))≡ ∀x¬P(x)

are laws that hold for any proposition P quantified over any universe. (Recall that “≡” means logically
equivalent.) It is helpful to think of English sentences to convince yourself (informally) that these laws are
true. For example, assume that we are working within the universe Z (the set of all integers), and that P(x)
is the proposition “x is odd.” We know that the statement (∀xP(x)) is false, since not every integer is odd.
Therefore, we expect its negation, ¬(∀xP(x)), to be true. But how would you say the negation in English?
Well, if it is not true that every integer is odd, then that must mean there is some integer which is not odd
(i.e., even). How would this be written in propositional form? That’s easy, it’s just: (∃x¬P(x)).

To see a more complex example, fix some universe and propositional formula P(x,y). Assume we have the
proposition ¬(∀x∃yP(x,y)) and we want to push the negation operator inside the quantifiers. By the above
laws, we can do it as follows:

¬(∀x∃yP(x,y))≡ ∃x¬(∃yP(x,y))≡ ∃x∀y¬P(x,y).

Notice that we broke the complex negation into a smaller, easier problem as the negation propagated itself
through the quantifiers. Note also that the quantifiers “flip” as we go.

Let’s look at a trickier example:

Write the sentence “there are at least three distinct integers x that satisfy P(x)” as a proposition using
quantifiers! One way to do it is

∃x∃y∃z(x 6= y∧ y 6= z∧ z 6= x∧P(x)∧P(y)∧P(z)).

(Here all quantifiers are over the universe Z of integers.) Now write the sentence “there are at most three
distinct integers x that satisfy P(x)” as a proposition using quantifiers. One way to do it is

∃x∃y∃z∀d(P(d) =⇒ d = x∨d = y∨d = z).
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Here is an equivalent way to do it:

∀x∀y∀v∀z((x 6= y∧ y 6= v∧ v 6= x∧ x 6= z∧ y 6= z∧ v 6= z) =⇒¬(P(x)∧P(y)∧P(v)∧P(z))).

[Check that you understand both of the above alternatives.] Finally, what if we want to express the sen-
tence “there are exactly three distinct integers x that satisfy P(x)”? This is now easy: we can just use the
conjunction of the two propositions above.
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Proofs
Intuitively, the concept of proof should already be familiar. We all like to assert things, and few of us like to
say things that turn out to be false. A proof provides a means for guaranteeing such claims.

Proofs in mathematics and computer science require a precisely stated proposition to be proved. But what
exactly is a proof? How do you show that a proposition is true? Recall that there are certain propositions
called axioms or postulates, that we accept without proof (we have to start somewhere). A formal proof is a
sequence of statements, ending with the proposition being proved, with the property that each statement is
either an axiom or its truth follows easily from the fact that the previous statements are true. For example,
in high school geometry you may have written two-column proofs where one column lists the statements
and the other column lists the justifications for each statement. The justifications invoke certain very simple
rules of inference which we trust (such as if P is true and Q is true, then P∧Q is true). Every proof has these
elements, though it does not have to be written in a tabular format. And most importantly, the fact that each
step follows from the previous step is so straightforward, it can be checked by a computer program.

A formal proof for all but the simplest propositions is too cumbersome to be useful. In practice, mathemati-
cians routinely skip steps to give proofs of reasonable length. How do they decide which steps to include in
the proof? The answer is sufficiently many steps to convince themselves and the reader that the details can
easily be filled in if desired. This of course depends upon the knowledge and skill of the audience. So in
practice proofs are socially negotiated.1

During the first few weeks of the semester, the proofs we will write will be quite formal. Once you get more
comfortable with the notion of a proof, we will relax a bit. We will start emphasizing the main ideas in our
proofs and sketching some of the routine steps. This will help increase clarity and understanding and reduce
clutter. A proof, for the purposes of this class, is essentially a convincing argument. Convincing to whom?
First, to you, the author, second, to your classmates, third, to your professor and your TA.

In this lecture you will see some examples of proofs. The proofs chosen are particularly interesting and
elegant, and some are of great historical importance. But the purpose of this lecture is not to teach you about
these particular proofs (and certainly not for you to attempt to memorize any of them!). Instead, you should
see these as good illustrations of various basic proof techniques. You will notice that sometimes when it is
hard to even get started proving a certain proposition using one proof technique, it is easy using a different
technique. This will come in handy later in the course when you work on homework problems or try to
prove a statement on your own. If you find yourself completely stuck, rather than getting discouraged you
might find that using a different proof technique opens doors that were previously closed.

We now begin with a few definitions pertaining to proofs.

A theorem, informally speaking, is a true proposition that is guaranteed by a proof. If you believe that a
statement is true but can’t prove it, call it a conjecture, essentially an educated guess.

1Those interested in exploring this issue in more detail may like to read the influential paper “Social Processes and Proofs of
Theorems and Programs” by DeMillo, Lipton and Perlis, Communications of the ACM 22 (1979) pages 271–280.
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A concept useful for writing up complicated proofs is that of a lemma, which is a little theorem that you use
in the proof of a bigger theorem. A lemma is to proofs what a subroutine is to programming.

An axiom is a statement we accept as true without proof.

There are many different types of proofs, as we shall see. The basic structure of these different types of
proofs is best expressed in terms of propositional logic.

Direct Proof
Let us start with a very simple example.

Theorem: If x is an odd integer, then x+1 is even.

Following the notation introduced in the previous Note, the statement of the theorem is equivalent to

(∀x ∈ Z)(x is odd =⇒ x+1 is even).

(Here Z denotes the set of all integers.) For each x, the proposition that we are trying to prove is of the
form P(x) =⇒ Q(x). A direct proof of this starts by assuming P(x) for a generic value of x and eventually
concludes Q(x) through a chain of implications:

Direct Proof of P =⇒ Q
Assume P

...
Therefore Q

Let us proceed with a direct proof of the simple example given above:

Proof: Assume x is odd. Then by definition, x = 2k+1 for some k ∈ Z. Adding one to both sides, we get
x+1 = 2k+2 = 2(k+1). Therefore, by definition, x+1 is an even number. 2

Before turning to our next example, we recall that the integer d divides n (denoted d|n) if and only if there
exists some integer q such that n = dq.

For the following, let n be a positive integer less than 1000.

Theorem: Let n be a positive integer. If the sum of the digits of n is divisible by 9, then n is divisible by 9.

Comment: The theorem is true for arbitrary n. We’re just doing the three digit case here so the notation does
not distract from the structure of the argument.

This theorem’s statement is equivalent to

(∀n ∈ Z+)(sum of n’s digits divisible by 9 =⇒ n divisible by 9).

(Here Z+ denotes the set of positive integers, {1,2, . . .}.) So once again we start by assuming, for a generic
value of n, that the sum of n’s digits is divisible by 9. Then we perform a sequence of steps to conclude that
n itself is divisible by 9. Here is the proof:

Proof: Suppose we have n such that the sum of the digits of n is divisible by 9. Let a be the hundred’s
digit of n, b the ten’s digit, and c the one’s digit. Then n = 100a+10b+c. Now suppose that the sum of the
digits of n is divisible by 9. This amounts to supposing that

a+b+ c = 9k
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for some k ∈ Z. Adding 99a+9b to both sides of the equation, we get

100a+10b+ c = 9k+99a+9b = 9(k+11a+b),

which is certainly divisible by 9 (since k+11a+b is an integer). And finally, since n = 100a+10b+ c, we
see that n is divisible by 9. 2

Exercise: Generalize the above proof so that it works for any positive integer n. [HINT: Suppose n has k
digits, and write ai for the ith digit of n, so that n = ∑

k−1
i=0 ai×10i.]

In this case the converse of the theorem is also true: If n is divisible by 9, the sum of its digits is divisible
by 9, too. In other words, the sum of the digits of n is divisible by 9 if and only if 2 n is divisible by 9. In
general, to prove P ⇐⇒ Q you have to do two proofs: You must show that P =⇒ Q and then, separately,
you must also show that Q =⇒ P.

Theorem: n is divisible by 9 if and only if the sum of the digits of n is divisible by 9.

Proof: We already proved above that if the sum of the digits of n is divisible by 9 then n is divisible by 9. So
we only need to prove the converse. We use the same notation for the digits of n as we used in the previous
proof:

n is divisible by 9
=⇒ n = 9`, for some ` ∈ Z
=⇒ 100a+10b+ c = 9`
=⇒ 99a+9b+(a+b+ c) = 9`
=⇒ a+b+ c = 9`−99a−9b
=⇒ a+b+ c = 9(`−11a−b)
=⇒ a+b+ c = 9k, where k = `−11a−b ∈ Z
=⇒ a+b+ c is divisible by 9. 2

Note that, in this simple example, the proof of Q =⇒ P is essentially the same as the proof of Q =⇒ P “run
backwards.” In such a case, it’s tempting to try to get away with proving both of the implications at the
same time (using the symbol ⇐⇒ at every step of the proof). However, I do not recommend this approach.
Doing so requires great caution: for the proof to be legitimate, the steps have to make just as much sense
backwards as forwards! (Go back and read the last proof again, starting with the last line and ending with
the first, and convince yourself that it also works backwards.) To avoid potential pitfalls, it is recommended
that you always prove a statement of the form P ⇐⇒ Q using two separate proofs. This will in any case
be necessary in more interesting examples, where the proofs of P =⇒ Q and of Q =⇒ P might look very
different.

Proof by Contraposition
In the last lecture, we learned that a statement of the form P =⇒ Q is logically equivalent to its contrapos-
itive: ¬Q =⇒ ¬P. This means that proving an implication is equivalent to proving the contrapositive. A
proof by contraposition of P =⇒ Q is just a direct proof of its contrapositive ¬Q =⇒ ¬P:

2The phrase “if and only if” is often abbreviated to “iff”.
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Proof by Contraposition of P =⇒ Q
Assume ¬Q

...
Therefore ¬P
So ¬Q =⇒¬P, or equivalently P =⇒ Q

Sometimes proving the contrapositive of a statement is easier than proving the statement directly. Here is an
illustrative example.

Theorem: Let n be an integer and let d divide n. Then, if n is odd then d is odd.

Proving this directly would be difficult. We would assume n is odd but what then? Proving the contrapositive
of the statement, however, is very straightforward. The contrapositive is: If d is even then n is even.

Proof: Suppose d is even, then (by definition) d = 2k for some k ∈ Z.
Because d|n, we have n = dq for some q ∈ Z.
Combining these two statements, we have n = dq = (2k)q = 2(kq).
So n is even. So if d is even then n is even. Therefore if n is odd then d is odd. 2

Proof by contraposition is a very common technique. When proving implications (P =⇒ Q) the con-
trapositive gives us a second option for how to approach the problem. As a warning, do not confuse the
contrapositive with the converse! To give some intuition using English, consider the statement “If it is
sunny, then it is daytime.” The contrapositive is “If it is nighttime, then it is not sunny,” and the converse is
“If it is daytime, then it is sunny.” We know the original statement is true, and its contrapositive is also true.
However the converse is simply false (for example, a summer afternoon in San Francisco!).

Proof by Contradiction
Proof by contradiction is also called reductio ad absurdum (reduction to an absurdity). The idea is to
assume the opposite of what one is trying to prove and then show that this leads to something that is clearly
nonsensical: a contradiction.

Proof by Contradiction of P
Assume ¬P

...
R
...
¬R

Contradiction
Therefore P

Before proceeding to an example, let us try to understand the logic behind a proof by contradiction. We
assume ¬P, and then prove both R and ¬R. But for any proposition R, R∧¬R≡ False. So we have shown
that ¬P =⇒ False. The only way this implication can be true is if ¬P is false. i.e., P is true.

Our first example of a proof by contradiction dates back more than 2000 years—to Euclid.
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Theorem: There are infinitely many prime numbers.

Proving this directly would be difficult. How do we construct infinitely many prime numbers? But, as we
will see, bad things happen when we assume that this statement is false: that there are only finitely many
primes. Before we prove the theorem, we will state a simple lemma that we’ll use without proof. We will
prove it next week when we learn about induction.

Lemma: Every natural number greater than one is either prime or has a prime divisor (greater than one).

Now for the proof of the theorem.

Proof: Suppose (in order to get a contradiction) that there are only finitely many primes. Then, we can
enumerate them: p1, p2, p3, . . . , pk. (Here k is the total number of primes.)

Consider the number q = p1 p2 p3 . . . pk + 1, the product of all the primes plus one. Note that q cannot be
prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. (This
will be our statement R. More precisely, R is the assertion that p > 1.) Because p1, p2, p3, . . . , pk are all the
primes, p must be equal to one of them, so p is a divisor of their product.

So we have that p divides p1 p2 p3 . . . pk, and p divides q, but that means p divides their difference, which
is 1. Therefore, p≤ 1 (this is ¬R). Contradiction. If we start with the assumption that there are finitely many
primes, we derive a contradiction. The only remaining possibility is that our original assumption (finitely
many primes) was wrong. Therefore there are infinitely many primes. 2

Note that in the proof, q need not be prime, tempting as it might be to say so. It’s certainly not the case that
a product of primes plus one must always be prime (think of 7×2+1). Nor is it the case that the product of
the first k primes plus one must necessarily be prime (e.g., 2×3×5×7×11×13+1 = 30031 = 59×509).
When writing a proof, it is important to carefully think through each step, ensuring that it’s logically justified.
The most important part of learning mathematics is learning a habit of thinking clearly and precisely.

Let’s look at another classic proof by contradiction. A rational number is a number that can be expressed
as the ratio of two integers. For example, 2

3 , 3
5 , and 9

16 are all rational numbers. In fact, any number with a
finite or recurring decimal representation is a rational. [Exercise: Can you prove this?] Numbers that cannot
be expressed as fractions are called irrational.

Theorem:
√

2 is irrational.

Proof: Assume (for the sake of contradiction) that
√

2 is rational. By the definition of rational numbers, this
means that there exist integers a and b with no common factor other than 1, such that

√
2 = a/b. (This will

be our assertion R.)

For any numbers x and y, we know that x = y =⇒ x2 = y2. Hence 2 = a2/b2.

Multiplying both sides by b2, we have a2 = 2b2.

b is an integer, hence b2 is an integer, hence a2 is even (by the definition of evenness).

Hence, a is even (by the lemma below).

Therefore, by the definition of evenness, there is an integer c such that a = 2c.

Hence 2b2 = (2c)2 = 4c2, hence b2 = 2c2.

Since c is an integer, c2 is an integer, hence b2 is even.

Thus, b is even (by the lemma below).

Thus a and b have a common factor 2, contradicting the assertion that a and b have no common factor other
than 1. This shows that the original assumption that

√
2 is rational is false, and hence that

√
2 must be

irrational. 2
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Lemma: If a2 is even, then a is even.

Can you prove this lemma? First try a direct proof. How would you proceed? Now try a proof by contrapo-
sition.

Proof by contradiction can seem mysterious. A proof by contradiction of P starts by assuming ¬P, and then
it explores the consequences of this assumption. But you might wonder: why is it OK to assume ¬P is true?
Proofs aren’t allowed to make assumptions willy-nilly without justification, so why is it fair game to begin
the proof by assuming ¬P? The answer: certainly P is either true or false. If P is true, then we’re done:
we wanted to prove P is true, and it is. So the only thing left to consider is the possibility that P is false
(i.e., ¬P is true)—and a proof by contradiction demonstrates that this is in fact impossible, from which it
follows that P must be true. Once we conclusively rule out the possibility that P might be false (by deriving
a contradiction), we’re entitled to conclude that P must be true.

Here is one more proof by contradiction, if you’d like to see another example.

Theorem: x5− x+1 = 0 has no solution in the rational numbers.

To prove this theorem, we will first state and prove a useful lemma.

Lemma 1: If x is a real number satisfying x5− x+1 = 0, and if x = a/b for some a,b ∈ Z with b 6= 0, then
both a and b are even.

Proof: Plugging in x = a/b, we have

(a/b)5− (a/b)+1 = 0.

Multiplying both sides by b5 yields
a5−ab4 +b5 = 0.

Now we perform a case analysis, looking at the parity of a and b:

• Case 0 (a is odd and b is odd): In this case, a5, ab4, and b5 are all odd. Thus the left-hand side (LHS)
of the second equation above has the form odd− odd+ odd, and so the LHS is odd. However, the
right-hand side (RHS) is even, which is impossible.

• Case 1 (a is odd and b is even): In this case, the LHS has the form odd− even+ even, so the LHS is
odd. As before, this is impossible.

• Case 2 (a is even and b is odd): In this case, the LHS has the form even− even+odd, so the LHS is
odd. This too is impossible.

We have eliminated the three cases above as impossible, so the only remaining possibility is that a must be
even and b must be even. 2

We’re now ready to prove the theorem.

Proof: Suppose (for the sake of a contradiction) that there exists some rational number, call it x, such that
x5− x+1 = 0. Since x is rational, we can find a,b ∈ Z such that x = a/b and b > 0. Actually, there might
be many ways to express x in this way (i.e., many pairs of a,b ∈ Z such that x = a/b and b > 0); among all
of these ways, let a,b be the choice that makes b minimal, i.e., that makes b as small as possible.

Now define α = a/2 and β = b/2. By Lemma 1, both a and b must be even, so both α and β must be
integers. Also, x = a/b = (2α/2β ) = α/β , so x = α/β . in particular, we have x = α/β , and also α,β ∈ Z
and β > 0. In other words, α,β provide another way to express x. But β = b/2, so β < b. So b must
not have been minimal after all. This is a contradiction. So our assumption must have been wrong—we’ve
proven there does not exist any rational number x satisfying x5− x+1 = 0. 2
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Proof by Cases
Sometimes we don’t know which of a set of possible cases is true, but we know that at least one of the cases
is true. If we can prove our result in each of the cases, then we have a proof. The English phrase “damned
if you do and damned if you don’t” sums up this proof method. Here’s a nice example:

Theorem: There exists some pair of irrational numbers x and y such that xy is rational.

Comment: This is our first example in this Note of a theorem that is existentially quantified (“there exists”).
In other words, the statement may be written as

(∃x)(∃y)(x is irrational∧ y is irrational∧ xy is rational).

Thus to prove the theorem we only need to prove the existence of at least one example of values x,y that
satisfy the claim. (For this reason, proofs of existentially quantified statements are often—but not always—a
little easier than proofs of universally quantified ones.)

Proof of the theorem: Consider the case x =
√

2 and y =
√

2. Clearly, either

(a)
√

2
√

2
is rational; or

(b)
√

2
√

2
is irrational.

In case (a), we have shown irrational numbers x and y such that xy is rational, so we are done.

In case (b), consider the new values x =
√

2
√

2
and y =

√
2. We have

xy = (
√

2
√

2
)
√

2

=
√

2
√

2
√

2
by the axiom (xy)z = xyz

=
√

2
2
= 2

Hence we have again shown irrational numbers x and y such that xy is rational.
Since one of cases (a) and (b) must be true, and since in both cases we have exhibited irrational numbers x
and y such that xy is rational, we can conclude that such numbers must always exist. 2

Notice that even after the proof, we still don’t know which of the two cases is true, so we can’t actually
exhibit any irrational numbers satisfying the theorem. This is an example of a nonconstructive proof: one
in which an existential theorem is proved without constructing an explicit example.

Non-proof
Failure to logically structure a proof or note the justification for each step can lead easily to “non-proofs.”
Consider the following examples.

Theorem: (not!) −2 = 2.

Proof: Assume−2 = 2. Squaring both sides, we get (−2)2 = 22, or 4 = 4, which is true. Therefore,−2 = 2.
2

The theorem is obviously false, so what did we do wrong? Our arithmetic is correct, and it seems like each
step follows from the previous step. The problem with this proof does not lie in the arithmetic, but rather the
logic. We assumed the very theorem we were trying to prove was true! As you can see, logical soundness
and structure are extremely important when proving propositions.
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The next proof is incorrect for a different reason.

Theorem: (not!) 1 =−1

Proof: 1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 =

√
−12

=−1. 2

This proof appears to be logically sound, so the error lies elsewhere. Since we have concluded a falsehood,
at least one of these steps must be false. Indeed, it is simply untrue that

√
xy =

√
x
√

y. If you think carefully
through each step of your proofs, you can avoid such missteps.

Other classic errors:

• Dividing both sides of an equation by a variable. For example, suppose you see the following:

ax = bx hence a = b.

The “axiom” to which this step implicitly appeals is false, because if x = 0, the claim a = b is not
necessarily true. So in this case, all we can conclude is that either x = 0 or a = b (this can also be
written as x(a−b) = 0). Some extra work may be needed to prove x 6= 0.

• Dividing both sides of an inequality by a variable. This is even worse! For example:

ax < bx hence a < b.

Here the claim a < b is false if x < 0, and unproven if x = 0.

• More generally, forgetting about 0. Forgetting to account for the possibility of variables being zero
causes lots of headaches (including the above).

• “Working backwards.” If you ever played with one of those puzzles where you solve a maze on
paper, you may have learned the trick of starting at the exit of the maze and working backwards to the
entrance. It’s tempting to apply the same tricks to proving theorems: start with what you are trying
to prove, and manipulate the claim until you get to one of the assumptions. However, this style of
reasoning is erroneous; it amounts to a “converse error.” You can’t start by assuming what you are
trying to prove. All reasoning should go “forwards”: start with what you are given, and then work out
what you can conclude from those givens, and so on.

Style and substance in proofs
We conclude with some general words of advice. First, get in the habit of thinking carefully before you
write down the next sentence of your proof. If you cannot explain clearly why the step is justified, you are
making a leap and you need to go back and think some more. In theory, each step in a proof must be justified
by appealing to a definition or general axiom. In practice the depth to which one must do this is a matter
of taste. For example, we could break down the step, “Since a is an integer, (2a2 + 2a) is an integer,” into
several more steps. [Exercise: what are they?] A justification can be stated without proof only if you are
absolutely confident that (1) it is correct and (2) the reader will automatically agree that it is correct.

Notice that in the proof that
√

2 is irrational, we used the result, “For any integer n, if n2 is even then
n is even,” twice. This suggests that it may be a useful fact in many proofs. A subsidiary result that is
useful in a more complex proof is called a lemma. It is often a good idea to break down a long proof into
several lemmas. This is similar to the way in which large programming tasks should be divided up into
smaller subroutines. Furthermore, make each lemma (like each subroutine) as general as possible so it can
be reused elsewhere.
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The dividing line between lemmas and theorems is not clear-cut. Usually, when writing a paper, the theorems
are those propositions that you want to “export” from the paper to the rest of the world, whereas the lemmas
are propositions used locally in the proofs of your theorems. There are, however, some lemmas (for example,
the Pumping Lemma and the Lifting Lemma) that are perhaps more famous and important than the theorems
they were used to prove.

Finally, you should remember that the point of this lecture was not the specific statements we proved, but
the different proof strategies, and their logical structure. Make sure you understand them clearly; you will
be using them when you write your own proofs in homework and exams.

Proof Tips
Sometimes you can get some idea of how to structure your proof by looking at the form of the proposition
you are trying to prove. Some examples:

• To prove something of the form P∧Q, first, prove P. Then, prove Q.

• To prove something of the form P∨Q, one possibility is to guess which of P,Q is true and prove just
that one. Another possibility is to try proving (¬P) =⇒ Q or (¬Q) =⇒ P.

• To prove something of the form P =⇒ Q, try a direct proof (start by assuming P, work out its conse-
quences, and see if you can derive Q).

• To prove something of the form (∀x ∈ S)P(x), try a direct proof: consider a generic x, where you
make absolutely no assumptions about the value of x other than that x ∈ S; then see if you can prove
that P(x) holds for that value of x. If you proved P(x) without making any assumptions about x, your
proof must apply to every possible value of x.

In the next Note, we will see another technique to prove statements of the form (∀n ∈ N)P(n).

• To prove something of the form (∃x)P(x), try to find a value of x that makes P(x) true, and just list it.

• To prove something of the form P, sometimes it is helpful to split by cases: look for some other
proposition Q that allows you to prove both Q =⇒ P and (¬Q) =⇒ P. You can then use a proof by
cases.

• If the proposition has no quantifiers (no ∀ or ∃ symbols), you could try a proof by enumeration: draw
a truth table and show that the proposition is true in all cases. If you have a compound proposition
built up out of P1, . . . ,Pk atomic propositions, then the truth table will have 2k rows, so this technique
is only feasible if the number of atomic propositions is not too large.

You can combine these techniques. For instance, if you are trying to prove something of the form (∀n ∈
N)(P(n) =⇒ Q(n)), you might try a direct proof: consider a generic value of n ∈ N, where all you are
allowed to assume about n is that P(n) is true, and try to derive Q(n).
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 3

Induction
Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all
natural numbers:

1) ∀k ∈ N, 0+1+2+3+ · · ·+ k = k(k+1)
2

2) ∀k ∈ N, the sum of the first k odd numbers is a perfect square.

3) Any graph with k vertices and k edges contains a cycle.

Each of these propositions is of the form ∀k ∈ N P(k). For example, in the first proposition, P(k) is the
statement 0+ 1+ · · ·+ k = k(k+1)

2 , P(0) says 0 = 0(0+1)
2 , P(1) says 0+ 1 = 1(1+1)

2 , etc. The principle of
induction asserts that you can prove P(k) is true ∀k ∈ N, by following these three steps:

Base Case: Prove that P(0) is true.

Inductive Hypothesis: Assume that P(k) is true.

Inductive Step: Prove that P(k+1) is true.

The principle of induction formally says that if P(0) and ∀n ∈ N (P(n) =⇒ P(n+ 1)), then ∀n ∈ N P(n).
Intuitively, the base case says that P(0) holds, while the inductive step says that P(0) =⇒P(1), and P(1) =⇒
P(2), and so on. The fact that this “domino effect" eventually shows that ∀n ∈ N P(n) is what the principle
of induction (or the induction axiom) states. In fact, dominoes are a wonderful analogy: we have a domino
for each proposition P(k). The dominoes are lined up so that if the kth domino is knocked over, then it in turn
knocks over the k+1st . Knocking over the kth domino corresponds to proving P(k) is true. So the induction
step corresponds to the fact that the kth domino knocks over the k+1st domino. Now, if we knock over the
first domino (the one numbered 0), then this sets off a chain reaction that knocks down all the dominoes.

Let’s see some examples.

Theorem: ∀k ∈ N,
k

∑
i=0

i =
k(k+1)

2
.

Proof (by induction on k):

• Base Case: P(0) asserts:
0

∑
i=0

i =
0(0+1)

2
. This clearly holds, since the left and right hand sides both

equal 0.
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• Inductive Hypothesis: Assume P(k) is true. That is,
k

∑
i=0

i =
k(k+1)

2
.

• Inductive Step: We must show P(k+1). That is,
k+1

∑
i=0

i =
(k+1)(k+2)

2
:

k+1

∑
i=0

i = (
k

∑
i=0

i)+(k+1)

=
k(k+1)

2
+(k+1) (by the inductive hypothesis)

= (k+1)(
k
2
+1)

=
(k+1)(k+2)

2
.

Hence, by the principle of induction, the theorem holds. ♠
Note the structure of the inductive step. You try to show P(k+ 1) under the assumption that P(k) is true.
The idea is that P(k+ 1) by itself is a difficult proposition to prove. Many difficult problems in EECS are
solved by breaking the problem into smaller, easier ones. This is precisely what we did in the inductive step:
P(k+1) is difficult to prove, but we were able to recursively define it in terms of P(k).

We will now look at another proof by induction, but first we will introduce some notation and a definition
for divisibility. We say that integer a divides b (or b is divisible by a), written as a|b, if and only if for some
integer q, b = aq.

Theorem: ∀n ∈ N, n3−n is divisible by 3.

Proof (by induction over n):

• Base Case: P(0) asserts that 3|(03−0) or 3|0, which is clearly true (since 0 = 3 ·0).

• Inductive Hypothesis: Assume P(n) is true. That is, 3|(n3−n).

• Inductive Step: We must show that P(n+1) is true, which asserts that 3|((n+1)3− (n+1)). Let us
expand this out:

(n+1)3− (n+1) = n3 +3n2 +3n+1− (n+1)

= (n3−n)+3n2 +3n

= 3q+3(n2 +n), q ∈ Z (by the inductive hypothesis)

= 3(q+n2 +n)

Hence, by the principle of induction, ∀n ∈ N, 3|(n3−n). ♠

The next example we will look at is an inequality between two functions of n. Such inequalities are useful
in computer science when showing that one algorithm is more efficient than another. Notice that for this
example, we have chosen as our base case n = 2, which is natural because the claim we are aiming to prove
holds for all natural numbers greater than or equal to 2. If you think about the underlying induction principle,
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it should be clear that this is perfectly valid, for the same reason that standard induction starting at n = 0 is
valid (think back again to the domino analogy, where now the first domino is domino number 2).1

Theorem: ∀n ∈ N, n > 1 =⇒ n! < nn.

Proof (by induction over n):

• Base Case: P(2) asserts that 2! < 22, or 2 < 4, which is clearly true.

• Inductive Hypothesis: Assume P(n) is true (i.e., n! < nn).

• Inductive Step: We must show P(n+ 1), which states that (n+ 1)! < (n+ 1)n+1. Let us begin with
the left side of the inequality:

(n+1)! = (n+1) ·n!

< (n+1) ·nn (by the inductive hypothesis)

< (n+1) · (n+1)n

= (n+1)n+1

Hence, by the induction principle, ∀n ∈ N, if n > 1, then n! < nn. ♠

In the middle of the last century, a colloquial expression in common use was "that is a horse of a different
color", referring to something that is quite different from normal or common expectation. The famous
mathematician George Polya (who was also a great expositor of mathematics for the lay public) gave the
following proof to show that there is no horse of a different color!

Theorem: All horses are the same color.

Proof (by induction on the number of horses):

• Base Case: P(1) is certainly true, since with just one horse, all horses have the same color.

• Inductive Hypothesis: Assume P(n), which is the statement that n horses all have the same color.

• Inductive Step: Given a set of n+1 horses {h1,h2, . . . ,hn+1}, we can exclude the last horse in the set
and apply the inductive hypothesis just to the first n horses {h1, . . . ,hn}, deducing that they all have
the same color. Similarly, we can conclude that the last n horses {h2, . . . ,hn+1} all have the same
color. But now the “middle” horses {h2, . . . ,hn} (i.e., all but the first and the last) belong to both of
these sets, so they have the same color as horse h1 and horse hn+1. It follows, therefore, that all n+1
horses have the same color. Thus, by the principle of induction, all horses have the same color. ♠

Clearly, it is not true that all horses are of the same color, so where did we go wrong in our induction
proof? It is tempting to blame the induction hypothesis. But even though the induction hypothesis is false
(for n ≥ 2), that is not the flaw in the reasoning! Before reading on, think about this and see if you can
understand why, and figure out the real flaw in the proof.

What makes the flaw in this proof a little tricky to pinpoint is that the induction step is valid for a “typical"
value of n, say, n = 3. The flaw, however, is in the induction step when n = 1. In this case, for n+ 1 = 2
horses, there are no “middle” horses, and so the argument completely breaks down!

1Alternatively, we could insist on making the base case n = 0 (which holds vacuously here because 0 > 1 is false). Then we
would assert that P(0) =⇒ P(1), since P(1) holds (vacuously again), and that P(1) =⇒ P(2) since P(2) holds (as we show in the
base case below). Then we would proceed as in the inductive step of the proof below. But this is all rather tedious.

CS 70, Summer 2011, Note 3 21



Some of you might still not feel completely convinced. Why is the above flaw more convincing than simply
saying that the induction hypothesis is false? Saying that the induction hypothesis is false is like saying
that the statement of the theorem is false, and so there is definitely a flaw in the proof. True, but our
task was to pinpoint exactly where in the proof the flaw occurs. The point is that a valid induction proof
involves only showing the base case, say P(0), and that ∀n P(n) =⇒ P(n+ 1). One way of saying that
P(n) =⇒ P(n+ 1) is to assume P(n) is true and then show that P(n+ 1) is true. If P(n) is false, then
P(n) =⇒ P(n+1) vacuously. So just saying that the induction hypothesis P(n) is false does not pinpoint
the flaw in the proof.

Two Color Theorem: There is a famous theorem called the four color theorem. It states that any map can
be colored with four colors such that any two adjacent countries (which share a border, but not just a point)
must have different colors. The four color theorem is very difficult to prove, and several bogus proofs were
claimed since the problem was first posed in 1852. It was not until 1976 that the theorem was finally proved
(with the aid of a computer) by Appel and Haken. (For an interesting history of the problem, and a state-of-
the-art proof, which is nonetheless still very challenging, see www.math.gatech.edu/∼thomas/FC/fourcolor.html).
We consider a simpler scenario, where we divide the plane into regions by drawing straight lines. We want
to know if we can color this map using no more than two colors (say, red and blue) such that no two regions
that share a boundary have the same color. Here is an example of a two-colored map:

We will prove this “two color theorem" by induction on n, the number of lines:

• Base Case: Prove that P(0) is true, which is the proposition that a map with n = 0 lines can be can be
colored using no more than two colors. But this is easy, since we can just color the entire plane using
one color.

• Inductive Hypothesis: Assume P(n). That is, a map with n lines can be two-colored.

• Inductive Step: Prove P(n+1). We are given a map with n+1 lines and wish to show that it can be
two-colored. Let’s see what happens if we remove a line. With only n lines on the plane, we know
we can two-color the map (by the inductive hypothesis). Let us make the following observation: if
we swap red ↔ blue, we still have a two-coloring. With this in mind, let us place back the line we
removed, and leave colors on one side of the line unchanged. On the other side of the line, swap red
↔ blue. We claim that this is a valid two-coloring for the map with n+1 lines.

Why does this work? We can say with certainty that regions which do not border the line are properly
two-colored. But what about regions that do share a border with the line? We must be certain that any
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two such regions have opposite coloring. But any two regions that border the line must have been the
same region when the line was removed, so the reversal of color on one side of the line guarantees an
opposite coloring. ♠

Strengthening the Inductive Hypothesis
Let us prove by induction the following proposition:

Theorem: For all n≥ 1, the sum of the first n odd numbers is a perfect square.

Proof: By induction on n.

• Base Case: n = 1. The first odd number is 1, which is a perfect square.

• Inductive Hypothesis: Assume that the sum of the first n odd numbers is a perfect square, say k2.

• Inductive Step: The n+ 1-th odd number is 2n+ 1, so the sum of the first n+ 1 odd numbers is
k2 +2n+1. But now we are stuck. Why should k2 +2n+1 be a perfect square?

Here is an idea: let us show something stronger!

Theorem: For all n≥ 1, the sum of the first n odd numbers is n2.

Proof: By induction on n.

• Base Case: n = 1. The first odd number is 1, which is 12.

• Inductive Hypothesis: Assume that the sum of the first n odd numbers is n2.

• Inductive Step: The (n+ 1)-th odd number is 2n+ 1, so the sum of the first n+ 1 odd numbers is
n2 +(2n+1) = (n+1)2. Thus by the principle of induction the theorem holds. ♠

See if you can understand what happened here. We could not prove a proposition, so we proved a harder
proposition instead! Can you see why that can sometimes be easier when you are doing a proof by induction?
When you are trying to prove a stronger statement by induction, you have to show something harder in the
induction step, but you also get to assume something stronger in the induction hypothesis. Sometimes the
stronger assumption helps you reach just that much further...

Here is another example:

Imagine that we are given L-shaped tiles (i.e., a 2×2 square tile with a missing 1×1 square), and we want
to know if we can tile a 2n×2n courtyard with a missing 1×1 square in the middle. Here is an example of
a successful tiling in the case that n = 2:

Let us try to prove the proposition by induction on n.

• Base Case: Prove P(1). This is the proposition that a 2×2 courtyard can be tiled with L-shaped tiles
with a missing 1×1 square in the middle. But this is easy:
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• Inductive Hypothesis: Assume P(n) is true. That is, we can tile a 2n× 2n courtyard with a missing
1×1 square in the middle.

• Inductive Step: We want to show that we can tile a 2n+1×2n+1 courtyard with a missing 1×1 square in
the middle. Let’s try to reduce this problem so we can apply our inductive hypothesis. A 2n+1×2n+1

courtyard can be broken up into four smaller courtyards of size 2n× 2n, each with a missing 1× 1
square as follows:

But the holes are not in the middle of each 2n× 2n courtyard, so the inductive hypothesis does not
help! How should we proceed? We should strengthen our inductive hypothesis!

What we are about to do is completely counter-intuitive. It’s like attempting to lift 100 pounds, failing, and
then saying “I couldn’t lift 100 pounds. Let me try to lift 200," and then succeeding! Instead of proving that
we can tile a 2n×2n courtyard with a hole in the middle, we will try to prove something stronger: that we
can tile the courtyard with the hole being anywhere we choose. It is a trade-off: we have to prove more, but
we also get to assume a stronger hypothesis. The base case is the same, so we will just work on the inductive
hypothesis and step.

• Inductive Hypothesis (second attempt): Assume P(n) is true, so that we can tile a 2n× 2n courtyard
with a missing 1×1 square anywhere.

• Inductive Step (second attempt): As before, we can break up the 2n+1×2n+1 courtyard as follows.

By placing the first tile as shown, we get four 2n× 2n courtyards, each with a 1× 1 hole; three of
these courtyards have the hole in one corner, while the fourth has the hole in a position determined by
the hole in the 2n+1×2n+1 courtyard. The stronger inductive hypothesis now applies to each of these
four courtyards, so that each of them can be successfully tiled. Thus, we have proven that we can tile
a 2n+1×2n+1 courtyard with a hole anywhere! Hence, by the induction principle, we have proved the
(stronger) theorem. ♠

Strong Induction
Strong induction is very similar to simple induction, with the exception of the inductive hypothesis. With
strong induction, instead of just assuming P(k) is true, you assume the stronger statement that P(0), P(1),
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. . . , and P(k) are all true (i.e., P(0)∧P(1)∧·· ·∧P(k) is true, or in more compact notation
∧k

i=0 P(i) is true).
Strong induction sometimes makes the proof of the inductive step much easier since we get to assume a
stronger statement, as illustrated in the next example.

Theorem: Every natural number n > 1 can be written as a product of primes.

Recall that a number n≥ 2 is prime if 1 and n are its only divisors. Let P(n) be the proposition that n can be
written as a product of primes. We will prove that P(n) is true for all n≥ 2.

• Base Case: We start at n = 2. Clearly P(2) holds, since 2 is a prime number.

• Inductive Hypothesis: Assume P(k) is true for 2 ≤ k ≤ n: i.e., every number k : 2 ≤ k ≤ n can be
written as a product of primes.

• Inductive Step: We must show that n+ 1 can be written as a product of primes. We have two cases:
either n+ 1 is a prime number, or it is not. For the first case, if n+ 1 is a prime number, then we
are done. For the second case, if n+ 1 is not a prime number, then by definition n+ 1 = xy, where
x,y ∈ Z+ and 1 < x,y < n+1. By the inductive hypothesis, x and y can each be written as a product
of primes (since x,y≤ n). Therefore, n+1 can also be written as a product of primes. ♠

Why does this proof fail if we were to use simple induction? If we only assume P(n) is true, then we cannot
apply our inductive hypothesis to x and y. For example, if we were trying to prove P(42), we might write
42 = 6× 7, and then it is useful to know that P(6) and P(7) are true. However, with simple induction, we
could only assume P(41), i.e., that 41 can be written as a product of primes — a fact that is not useful in
establishing P(42).

Simple Induction vs. Strong Induction
We have seen that strong induction makes certain proofs easy when simple induction seems to fail. A natural
question to ask then, is whether the strong induction axiom is logically stronger than the simple induction
axiom. In fact, the two methods of induction are logically equivalent. Clearly anything that can be proven by
simple induction can also be proven by strong induction (convince yourself of this!). For the other direction,
suppose we can prove by strong induction that ∀n P(n). Let Q(k) = P(0)∧·· ·∧P(k). Let us prove ∀k Q(k)
by simple induction. The proof is modeled after the strong induction proof of ∀n P(n). That is, we want
to show Q(k)⇒ Q(k + 1), or equivalently P(0)∧ ·· · ∧P(k)⇒ P(0)∧ ·· · ∧P(k)∧P(k + 1). But this is
true iff P(0)∧·· ·∧P(k)⇒ P(k+1). This is exactly what the strong induction proof of ∀n P(n) establishes!
Therefore, we can establish ∀n Q(n) by simple induction. And clearly, proving ∀n Q(n) also proves ∀n P(n).

Well Ordering Principle
How can the induction axiom fail to be true? Recall that the axiom says the following: [P(0)∧∀n P(n)⇒
P(n+ 1)] =⇒ ∀n P(n). Assume for contradiction that ¬(∀n ∈ N P(n)). Then this means that ∃n(¬P(n)),
i.e., P(n) is false for some n. Let m be the smallest n for which P(n) is false. Since m is smallest, it must
be the case that P(m−1) is true. But this directly contradicts the fact that P(m−1) =⇒ P(m)! It may seem
as though we just proved the induction axiom. But what we have actually done is to show that the induction
axiom follows from another axiom, which was used implicitly in defining m as “the smallest n for which
P(n) is false."

Well ordering principle: If S⊆ N and S 6= /0, then S has a smallest element.
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We assumed something when defining m that is usually taken for granted: that we can actually find a smallest
number in any set of natural numbers. This property does not hold for, say, the real numbers; to see why,
consider the set {x ∈ R : 0 < x < 1}. Whatever number is claimed to be the smallest in this set, we can
always find a smaller one. Again, the well ordering principle may seem obvious but it should not be taken
for granted. It is only because the natural numbers (and any subset of the natural numbers) are well ordered
that we can find a smallest element. Not only does the principle underlie the induction axioms, but it also
has direct uses in its own right. Here is a simple example.

Round robin tournament: Suppose that, in a round robin tournament, we have a set of n players {p1, p2, . . . , pn}
such that p1 beats p2, p2 beats p3, . . . , and pn beats p1. This is called a cycle in the tournament:

Claim: If there exists a cycle in a tournament, then there exists a cycle of length 3.

Proof: Assume for contradiction that the smallest cycle is:

with n > 3. Let us look at the game between p1 and p3. We have two cases: either p3 beats p1, or p1 beats
p3. In the first case (where p3 beats p1), then we are done because we have a 3-cycle. In the second case
(where p1 beats p3), we have a shorter cycle {p3, p4, . . . , pn} and thus a contradiction. Therefore, if there
exists a cycle, then there must exist a 3-cycle as well. ♠

Induction and Recursion
There is an intimate connection between induction and recursion in mathematics and computer science. A
recursive definition of a function over the natural numbers specifies the value of the function at small values
of n, and defines the value of f (n) for a general n in terms of the value of f (m) for m < n. Let us consider
the example of the Fibonacci numbers, defined in a puzzle by Fibonacci (in the year 1202).

Fibonacci’s puzzle: A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How
many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair
begets a new pair which from the second month on becomes productive?

Let F(n) denote the number of pairs of rabbits in month n. According to the above specification, the initial
conditions are F(0) = 0 and, when the pair of rabbits is introduced, F(1) = 1. Also F(2) = 1, since the
pair is not yet productive. In month 3, according to the conditions, the pair of rabbits begets a new pair. So

26 CS 70, Summer 2011, Note 3



F(3) = 2. In the fourth month, this new pair is not yet productive, but the original pair is, so F(4) = 3. What
about F(n) for a general value of n? This is a little tricky to figure out unless you look at it the right way.
The number of pairs in month n−1 is F(n−1). Of these how many were productive? Only those that were
alive in the previous month - i.e. F(n−2) of them. Thus there are F(n−2) new pairs in the n-th month, and
so F(n) = F(n−1)+F(n−2). This completes the recursive definition of F(n):

• F(0) = 0, and F(1) = 1

• For n≥ 2, F(n) = F(n−1)+F(n−2)

This admittedly simple model of population growth nevertheless illustrates a fundamental principle. Left
unchecked, populations grow exponentially over time. [Exercise: can you show, for example, that F(n) ≥
2(n−1)/2 for all n≥ 3?] Understanding the significance of this unchecked exponential population growth was
a key step that led Darwin to formulate his theory of evolution. To quote Darwin: “There is no exception to
the rule that every organic being increases at so high a rate, that if not destroyed, the earth would soon be
covered by the progeny of a single pair."

Be sure you understand that a recursive definition is not circular — even though in the above example F(n)
is defined in terms of the function F , there is a clear ordering which makes everything well-defined. Here is
a recursive program to evaluate F(n):

function F(n)
if n=0 then return 0
if n=1 then return 1
else return F(n-1) + F(n-2)

Can you figure out how long this program takes to compute F(n)? This is a very inefficient way to compute
the n-th Fibonacci number. A much faster way is to turn this into an iterative algorithm (this should be a
familiar example of turning a tail-recursion into an iterative algorithm):

function F2(n)
if n=0 then return 0
if n=1 then return 1
a = 1
b = 1
for k = 2 to n do
c = a
a = a + b
b = c

od
return a

Can you show by induction that this new function F2(n) = F(n)? How long does this program take to
compute F(n)?
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The Stable Marriage Problem: An Application of Proof
Techniques to Analysis of Algorithms
Consider a dating agency that must match up n men and n women. Each man has an ordered preference
list of the n women, and each woman has a similar list of the n men (ties are not allowed). Is there a good
algorithm that the agency can use to determine a good pairing?

Example

Consider for example n = 3 men (represented by numbers 1, 2, and 3) and 3 women (A, B, and C), and the
following preference lists:

Men Women
1 A B C
2 B A C
3 A B C

Women Men
A 2 1 3
B 1 2 3
C 1 2 3

For instance, the preference lists above mean that woman A is man 1’s top choice; woman B is his second
choice; and so on.

What properties should a good pairing have? One possible criterion for a “good” pairing is one in which the
number of first ranked choices is maximized. Another possibility is to minimize the number of last ranked
choices. Or perhaps minimizing the sum of the ranks of the choices, which may be thought of as maximizing
the average happiness. In this lecture we will focus on a very basic criterion: stability. A pairing is unstable
if there is a man and a woman who prefer each other to their current partners. We will call such a pair a
rogue couple. So a pairing of n men and n women is stable if it has no rogue couples.

An unstable pairing from the above example is: {(1,C), (2,B), (3,A)}. The reason is that 1 and B form a
rogue couple, since 1 would rather be with B than C (his current partner), and since B would rather be with
1 than 2 (her current partner). This is trouble: Before long, 1 and B are going to spending many late nights
doing CS70 problem sets together. Obviously, the existence of rogue couples is not a good thing if you are
a matchmaker, since they will lead to instability or customer dissatisfaction. That is why we focus on stable
pairings.

An example of a stable pairing is: {(2,A), (1,B), (3,C)}. Note that (1,A) is not a rogue couple. It is true that
man 1 would rather be with woman A than his current partner. Unfortunately for him, she would rather be
with her current partner than with him. Note also that both 3 and C are paired with their least favorite choice
in this matching. Nonetheless, it is a stable pairing, since there are no rogue couples.

The problem facing us is to find a stable pairing, given the preference lists for all n men and all n women.
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Does a Stable Pairing Always Exist?
Before we discuss how to find a stable pairing, let us ask a more basic question: do stable pairings always
exist? Surely the answer is yes, since we could start with any pairing and make it more and more stable as
follows: if there is a rogue couple, modify the current pairing so that they are together. Repeat. Surely this
procedure must result in a stable pairing! Unfortunately this reasoning is not sound. To demonstrate this,
let us consider a slightly different scenario, the roommates problem. Here we have 2n people who must be
paired up to be roommates (the difference being that unlike the dating scenario, a person can be paired with
any of the remaining 2n−1). The point is that nothing about the above reasoning relied on the fact that men
can only be paired with women in the dating scenario, so by the same reasoning we would expect that there
would be a stable pairing for the roommates problem as well. The following counter-example illustrates the
fallacy in the reasoning:

Roommates
A B C D
B C A D
C A B D
D – – –

Visually, we have the following situation:

What is interesting about this problem is that there is no stable pairing (i.e., there is always a rogue couple).
For example, the pairing {(A,B), (C,D)} contains the rogue couple B and C. Using the reasoning above,
we might decide to pair B and C together, giving us the pairing: {(B,C), (A,D)}. But this pairing is also
unstable because now A and C are a rogue couple. [Exercise: Verify that in this example there is no stable
pairing!] Thus any proof that there must be a stable pairing in the dating problem must use the fact that there
are two genders in an essential way.

In fact, we shall show that, when we have n men and n women, a stable pairing always exists. This fact is
somewhat surprising, but true.

The Traditional Marriage Algorithm
We will study what is sometimes called the “Traditional Marriage Algorithm” (TMA), so-called because it
is based on a 1950’s model of dating where the men propose to the women, and the women accept or reject
these proposals. We will prove that the Traditional Marriage Algorithm always finds a stable pairing and
study its many interesting properties.

The Traditional Marriage Algorithm works like this:

Every Morning: Each man goes to the first woman on his list not yet crossed off and proposes to her.

Every Afternoon: Each woman says “Maybe, come back tomorrow” to the man she likes best among the
men who have proposed to her (she now has him on a string) and “No, I will never marry you!” to all the
rest.

Every Evening: Each rejected suitor crosses off the woman who rejected him from his list.

The above loop is repeated each successive day until there are no more rejected suitors. On this day, each
woman marries the man she has on a string.

We wish to show that this algorithm always outputs a stable pairing. But how do we even know that it must
terminate? Let us prove something stronger: the algorithm is guaranteed to terminate in at most n2 days.
Well, for each day (except the last), at least one woman is crossed off some man’s list. Since there are n
men, each starting with a list of size n, it follows that the algorithm must terminate after n2 days.
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To establish that the pairing output is stable, we need the following crucial lemma:

Improvement Lemma: If woman W has man M on a string on the kth day, then on every subsequent day
she has someone on a string whom she likes at least as much as M.

Proof: Suppose that on day ` (for some `≥ k) W has some man M′ on a string, where she likes M′ at least
as much as M. (Possibly M = M′.) Since she has M′ on a string, that means that she told M′ “maybe” on
day `. On day `+ 1, M′ will come back and propose to W again, since he was told “maybe” the previous
day. So W has the choice of at least one man on day `+1. Let M′′ be her favorite choice among all of those
who propose to her on day `+ 1. (Possibly M′′ = M′.) She will tell M′′ “maybe” on day `+ 1, so on day
`+1 she will have M′′ on a string. Note that since M′ was one of the proposers on day `+1, this means that
she must like M′′ at least as much as she likes M′, and as we stated before, she likes M′ at least as much as
she does M. Therefore on day `+1 she has a man (namely, M′′) on a string who she likes at least as much
as M. We have proven that if the property is true on day `, then it is true on day `+1, so by induction on `,
it must be true for all `≥ k. 2

Let us now proceed to prove that at the end of the algorithm all 2n people are paired up. Before reading the
proof, see if you can convince yourself that this is true. The proof is remarkably short and elegant and is
based crucially on the Improvement Lemma:

Lemma: The algorithm terminates with a pairing.

Proof: Suppose for contradiction that there is a man M who is left unpaired at the end of the algorithm. He
must have proposed to every single woman on his list. By the Improvement Lemma, each of these women
thereafter has someone on a string. Thus when the algorithm terminates, n women have n men on a string
not including M. So there must be at least n+ 1 men. Contradiction. Our original assumption must have
been wrong. It follows that each man is paired up with a female partner of his own, which means that all n
women have a partner as well. 2

Now, before we prove that the output of the algorithm is a stable pairing, let us first do a sample run-through
of the stable marriage algorithm. We will use the preference lists given earlier, which are duplicated here
for convenience:

Men Women
1 A B C
2 B A C
3 A B C

Women Men
A 2 1 3
B 1 2 3
C 1 2 3

The following table shows which men propose to which women on the given day (the circled men are the
ones who were told “maybe”):

Days Women Proposals
1 A 1©, 3

B 2©
C —

2 A 1©
B 2©, 3
C —

3 A 1©
B 2©
C 3©

Thus, the stable pairing which the algorithm outputs is: {(1,A), (2,B), (3,C)}.
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Theorem: The pairing produced by the Traditional Marriage Algorithm is always stable.

Proof: We will show that no man M can be involved in a rogue couple. Consider any couple (M,W ) in the
pairing and suppose that M prefers some woman W ∗ to W . We will argue that W ∗ prefers her partner to M, so
that (M,W ∗) cannot be a rogue couple. Since W ∗ occurs before W in M’s list, he must have proposed to her
before he proposed to W . Therefore, according to the algorithm, W ∗ must have rejected him for somebody
she prefers. By the Improvement Lemma, W ∗ likes her final partner at least as much, and therefore prefers
him to M. Thus no man M can be involved in a rogue couple, and the pairing is stable. 2

Optimality
Consider the situation in which there are 4 men and 4 women with the following preference lists:

Men Women
1 A B C D
2 A D C B
3 A C B D
4 A B C D

Women Men
A 1 3 2 4
B 4 3 2 1
C 2 3 1 4
D 3 4 2 1

For these preference lists, there are exactly two stable pairings: S = {(1,A), (2,D), (3,C), (4,B)} and T =
{(1,A), (2,C), (3,D), (4,B)}. The fact that there is more than one stable pairing brings up an interesting
question. What is the best possible partner for each person? For instance, who is the best possible partner
who man 2 could hope to end up with? The trivial answer is his first choice (i.e., woman A), but that is just
not a realistic possibility for him. Pairing man 2 with woman A would simply not be stable, since he is so
low on her preference list. And indeed there is no stable pairing in which 2 is paired with A. Examining
the two stable pairings, we can see that the best possible realistic outcome for man 2 is to be matched to
woman D.

Let us make some definitions to better express these ideas: we say the optimal woman for a man is the
highest woman on his list whom he is paired with in any stable pairing. In other words, the optimal woman
is the best that a man can do under the condition of stability. In the above example, woman D is the optimal
woman for man 2. So the best that each man can hope for is to be paired with his optimal woman. But
can all the men achieve this optimality simultaneously? In other words, is there a stable pairing such that
each man is paired with his optimal woman? If such a pairing exists, we will call it a male optimal pairing.
Turning to the example above, S is a male optimal pairing since A is 1’s optimal woman, D is 2’s optimal
woman, C is 3’s optimal woman, and B is 4’s optimal woman. Similarly, we can define a female optimal
pairing, which is the pairing in which each woman is paired with her optimal man. [Exercise: Check that T
is a female optimal pairing.] We can also go in the opposite direction and define the pessimal woman for a
man to be the lowest ranked woman whom he is ever paired with in some stable pairing. This leads naturally
to the notion of a male pessimal pairing — can you define it, and also a female pessimal pairing?

Now, a natural question to ask is: Who is better off in the Traditional Marriage Algorithm: men or women?
Think about this before you read on...
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Theorem: The pairing output by the Traditional Marriage Algorithm is male optimal.

Proof: Suppose for the sake of contradiction that the pairing output by the TMA is not male optimal. This
means there must exist an earliest day, let’s say day k, in which some man was rejected by his optimal wife.
Call that man M. (There might be multiple men who were rejected by their optimal wives on day k; in that
case, we choose one of those men arbitrarily.) Let W be M’s optimal wife. Since M was rejected by W
on day k, on that day W must have accepted another man, let’s call him M∗, who she likes better than M.
Because no man was rejected by his optimal wife before day k, and because M∗ was not rejected on day k,
we conclude that M∗ has not yet been rejected by his optimal wife on day k. Therefore, there are only two
possibilities: (1) W is M∗’s optimal wife; or, (2) on day k, M∗ has not yet proposed to his optimal wife and
hence likes W better than his optimal wife.

Since W is M’s optimal wife, this means there must exist some stable pairing, call it T , where they are paired
together. In T , M∗ must have been paired off with someone else, call her W ∗. In other words, T looks like
this: T = {. . . ,(M,W ), . . . ,(M∗,W ∗), . . .}. Since T is stable, there are only two possibilities: (a) W ∗ is M∗’s
optimal wife; or, (b) M∗ likes his optimal wife better than W ∗.

All in all, we have four cases. We will show that each of these cases is impossible or leads to a contradiction.

• Case (1)(a) is impossible: W and W ∗ are two different women, so they can’t both be M∗’s optimal
wife.

• In case (1)(b), M∗ likes W , his optimal wife, better than W ∗.

• In case (2)(a), M∗ likes W better than W ∗, his optimal wife.

• In case (2)(b), M∗ likes W better than his optimal wife and his optimal wife better than W ∗, so M∗

likes W better than W ∗.

In every possible case, M∗ likes W better than W ∗. And, as we mentioned earlier, W likes M∗ better than
M. But this means that (M∗,W ) form a rogue couple in T : M∗ likes W better than his wife in T , and W
likes M∗ better than her husband in T . The existence of a rogue couple in T contradicts the stability of T .
Contradiction. Thus our original assumption—that the TMA-pairing is not male-optimal—must have been
incorrect. 2

What proof techniques did we use to prove this theorem? We used the well-ordering principle. How do we
see it as a regular induction proof? This is a bit subtle to figure out. See if you can do so before reading on...
the proof is really showing by induction on k the following statement: for every k, no man gets rejected by
his optimal woman on the kth day. [Exercise: Can you complete the induction?]

So men appear to fare very well by following the Traditional Marriage Algorithm. How about the women?
The following theorem reveals the sad truth:

Theorem: If a pairing is male optimal, then it is also female pessimal.

Proof: Let T = {. . . ,(M,W ), . . .} be the male optimal pairing. Consider any stable pairing where W is
paired with someone else, say, S = {. . . ,(M∗,W ), . . . ,(M,W ′), . . .}. Since T is male optimal, we know that
M prefers W (his mate in T ) to his mate in S. Since S is stable, we know that (M,W ) is not a rogue couple,
so W must prefer her mate in S (namely, M∗) to M. This means that every other stable pairing must match
W up to some other male who she likes at least as much as her mate in T . In other words, T pairs W up
with her pessimal man. Since W was arbitrary, we see that T pairs every female with her pessimal man.
Therefore, the male optimal pairing is female pessimal. 2

All this seems a bit unfair to the women! Are there any lessons to be learned from this? Make the first move!
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The Residency Match
Perhaps the most well-known application of the stable marriage algorithm is the residency match program,
which pairs medical school graduates and residency slots (internships) at teaching hospitals. Graduates
and hospitals submit their ordered preference lists, and the stable pairing produced by a computer matches
students with residency programs.

The road to the residency match program was long and twisted. Medical residency programs were first
introduced about a century ago. Since interns offered a source of cheap labor for hospitals, soon the number
of residency slots exceeded the number of medical graduates, resulting in fierce competition. Hospitals tried
to outdo each other by making their residency offers earlier and earlier. By the mid-40s, offers for residency
were being made by the beginning of junior year of medical school, and some hospitals were contemplating
even earlier offers — to sophomores! The American Medical Association finally stepped in and prohibited
medical schools from releasing student transcripts and reference letters until their senior year. This sparked
a new problem, with hospitals now making “short fuse” offers to make sure that if their offer was rejected
they could still find alternate interns to fill the slot. Once again the competition between hospitals led to an
unacceptable situation, with students being given only a few hours to decide whether they would accept an
offer.

Finally, in the early 50s, this unsustainable situation led to the centralized system called the National Res-
idency Matching Program (N.R.M.P.) in which the hospitals ranked the residents and the residents ranked
the hospitals. The N.R.M.P. then produced a pairing between the applicants and the hospitals, though at first
this pairing was not stable. It was not until 1952 that the N.R.M.P. switched to the Traditional Marriage
Algorithm, resulting in a stable pairing. Until recently the algorithm was run with the hospitals doing the
proposing, and so the pairings produced were hospital optimal. Only recently were the roles reversed such
that the medical students were proposing to the hospitals. In the 1990’s, there were other improvements
made to the algorithm which the N.R.M.P. used. For example, the pairing takes into account preferences for
married students for positions at the same or nearby hospitals.

Unsurprisingly, the Traditional Marriage Algorithm is also (reportedly) used by a large dating agency. But
it is apparently also used by Akamai, a large web hosting company. Akamai receives a great many web
requests, and needs to direct each web request to one of a pool of Akamai web servers. Web requests are
best served by nearby servers, and servers that aren’t currently busy are better suited to handle web requests
than servers that are. Apparently, Akamai uses the Traditional Marriage Algorithm to match web requests
to servers efficiently, where the web requests play the role of the men and the web servers are the girls.

Further reading (optional!)
Though it was in use 10 years earlier, the Traditional Marriage Algorithm was first properly analyzed by
Gale and Shapley, in a famous paper dating back to 1962 that still stands as one of the great achievements
in the analysis of algorithms. The full reference is:

D. Gale and L.S. Shapley, “College Admissions and the Stability of Marriage,” American Mathematical
Monthly 69 (1962), pp. 9–14.

Stable marriage and its numerous variants remains an active topic of research in computer science. Although
it is by now twenty years old, the following very readable book covers many of the interesting developments
since Gale and Shapley’s algorithm:

D. Gusfield and R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, 1989.

CS 70, Summer 2011, Note 4 33



CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 5

Modular Arithmetic
One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1, . . . ,m−1}, and
wraps around whenever you try to leave this range — like the hand of a clock (where m = 12) or the days
of the week (where m = 7).

Example: Calculating the day of the week. Suppose that you have mapped the sequence of days of
the week (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) to the sequence of numbers
(0,1,2,3,4,5,6) so that Sunday is 0, Monday is 1, etc. Suppose that today is Thursday (= 4), and you want
to calculate what day of the week will be 10 days from now. Intuitively, the answer is the remainder of
4+10 = 14 when divided by 7, that is, 0 —Sunday. In fact, it makes little sense to add a number like 10 in
this context, you should probably find its remainder modulo 7, namely 3, and then add this to 4, to find 7,
which is 0.

What if we want to continue this in 10 day jumps? After 5 such jumps, we would have day 4+3 ·5 = 19,
which gives 5 modulo 7 (Friday).

This example shows that in certain circumstances it makes sense to do arithmetic within the confines of
a particular number (7 in this example), that is, to do arithmetic by always finding the remainder of each
number modulo 7, say, and repeating this for the results, and so on. As well as being efficient in the sense of
keeping intermediate values as small as possible, this actually has several important applications, including
error-correcting codes and cryptography, as we shall see later.

To define things more formally, for any integer m (such as 7) we say that x and y are congruent modulo m if
they differ by a multiple of m, or in symbols,

x≡ y (mod m) ⇔ m divides (x− y).

For example, 29 ≡ 5 (mod 12) because 29−5 is a multiple of 12. We can also write 22 ≡ −2 (mod 12).
When we write

29≡ 5 (mod 12)

we use “≡” instead of “=” to remind us that this is not the ordinary equality, and “ (mod 12)” to indicate
that we are ignoring multiples of 12. An equivalent definition is to say that x and y are congruent modulo m
(written x≡ y (mod m)) iff they have the same remainder modulo m. Notice that “congruent modulo m” is
an equivalence relation: it partitions the integers into m equivalence classes 0,1,2, . . . ,m−1. We will also
use mod (x,m) to denote the function that, given integers x and m ≥ 1, returns the remainder of x modulo
m. So for example, mod (23,7) = 2.

When computing modulo m, it is often convenient to reduce any intermediate results mod m to simplify the
calculation, as we did in the example above. This is justified by the following claim:

Theorem 5.1: If a≡ c (mod m) and b≡ d (mod m), then a+b≡ c+d (mod m) and a ·b≡ c ·d (mod m).

Proof: We know that c = a+ k ·m and d = b+ ` ·m, so c+ d = a+ k ·m+ b+ ` ·m = a+ b+(k+ `) ·m,
which means that a+b≡ c+d (mod m). The proof for multiplication is similar and left as an exercise. 2
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What this theorem tells us is that we can always reduce any arithmetic expression modulo m into a natural
number smaller than m. As an example, consider the expression (13+ 11) · 18 mod 7. Using the above
Theorem several times we can write:

(13+11) ·18≡ (6+4) ·4 (mod 7)

≡ 10 ·4 (mod 7)

≡ 3 ·4 (mod 7)

≡ 12 (mod 7)

≡ 5 (mod 7).

In summary, we can always do calculations modulo m by reducing intermediate results modulo m.

Inverses
Addition and multiplication mod m is easy. To add two numbers a and b modulo m, we just add the numbers
and then subtract m if necessary to reduce the result to a number between 0 and m− 1. Multiplication can
be similarly carried out by multiplying a and b and then calculating the remainder when the result is divided
by m. Subtraction is equally easy. This is because subtracting b modulo m is the same as adding−b≡m−b
(mod m).

What about division? This is a bit harder. Over the reals, dividing by a number x is the same as multiplying
by y = 1/x. Here y is that number such that x · y = 1. Of course we have to be careful when x = 0, since
such a y does not exist. Similarly, when we wish to divide by x mod m, we need to find y mod m such that
x · y ≡ 1 (mod m); then dividing by x modulo m will be the same as multiplying by y modulo m. Such a y
is called the multiplicative inverse of x modulo m. In our present setting of modular arithmetic, can we be
sure that x has an inverse mod m, and if so, is it unique (modulo m) and can we compute it?

As a first example, take x = 8 and m = 15. Then 2x≡ 16≡ 1 (mod 15), so 2 is a multiplicative inverse of 8
mod 15. As a second example, take x = 12 and m = 15. Then the sequence {mod (ax,m) : a = 0,1,2, . . .} is
periodic, and takes on the values {0,12,9,6,3} (check this!). Thus 12 has no multiplicative inverse mod 15.

So when does x have a multiplicative inverse modulo m? The answer is: iff gcd(m,x) = 1. This condition
means that x and m share no common factors (except 1), and is often expressed by saying that x and m are
relatively prime. Moreover, when the inverse exists it is unique.

Theorem 5.2: Let m,x be positive integers such that gcd(m,x) = 1. Then x has a multiplicative inverse
modulo m, and it is unique (modulo m).

Proof: Consider the sequence of m numbers 0,x,2x, . . .(m−1)x. We claim that these are all distinct mod-
ulo m. Since there are only m distinct values modulo m, it must then be the case that ax ≡ 1 (mod m) for
exactly one a (modulo m). This a is the unique multiplicative inverse.

To verify the above claim, suppose that ax≡ bx (mod m) for two distinct values a,b in the range 0≤ a,b≤
m− 1. Then we would have (a− b)x ≡ 0 (mod m), or equivalently, (a− b)x = km for some integer k
(possibly zero or negative). But since x and m are relatively prime, it follows that a−b must be an integer
multiple of m. This is not possible since a,b are distinct non-negative integers less than m. 2

Actually it turns out that gcd(m,x) = 1 is also a necessary condition for the existence of an inverse: i.e., if
gcd(m,x) > 1 then x has no multiplicative inverse modulo m. You might like to try to prove this using a
similar idea to that in the above proof.

Since we know that multiplicative inverses are unique when gcd(m,x) = 1, we shall write the inverse of x as
x−1 mod m. But how do we compute x−1, given x and m? For this we take a somewhat roundabout route.
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First we shall consider the problem of computing the greatest common divisor gcd(a,b) of two integers a
and b.

Computing the Greatest Common Divisor
The greatest common divisor of two natural numbers x and y, denoted gcd(x,y), is the largest natural number
that divides them both. (Recall that 0 divides no number, and is divided by all.) How does one compute the
gcd? By Euclid’s algorithm, perhaps the first algorithm ever invented:

algorithm gcd(x,y)
if y = 0 then return x
else return gcd(y, mod(x,y))

We can express the very same algorithm a little more elegantly in Scheme:

(define (gcd x y)
(if (= y 0)

x
(gcd y (remainder x y)) ) )

Note: This algorithm assumes that x≥ y≥ 0 and x > 0.

Before proving that this algorithm correctly computes the greatest common divisor, it will be helpful to
prove a few lemmas.

Lemma 5.1: If x≥ y≥ 0 and x > 0, gcd(x,y) = gcd(x− y,y).

Proof: If d divides both x and y, then it divides x− y and y. If d divides x− y and y, then it divides x and y.
2

Lemma 5.2: If x≥ y≥ 0 and x > 0, gcd(x,y) = gcd(mod (x,y),y).

Proof: Apply the prior lemma n times, where n = bx/yc. 2
Theorem 5.3: Euclid’s algorithm (above) correctly computes the gcd of x and y in time O(n), where n is
the total number of bits in the input (x,y).

Proof: Correctness is proved by (strong) induction on y, the smaller of the two input numbers. For each
y≥ 0, let P(y) denote the proposition that the algorithm correctly computes gcd(x,y) for all values of x such
that x≥ y (and x > 0). Certainly P(0) holds, since gcd(x,0) = x and the algorithm correctly computes this in
the if-clause. For the inductive step, we may assume that P(z) holds for all z < y (the inductive hypothesis);
our task is to prove P(y). By the inductive hypothesis, the recursive call gcd(y, mod(x, y)) correctly
returns gcd(y, mod (x,y)) (just take z = mod (x,y), and notice that 0 ≤ z < y). Now the lemma assures us
that gcd(x,y) = gcd(mod (x,y),y) = gcd(y, mod (x,y)), hence the else-clause of the algorithm will return
the correct value gcd(x,y). This completes our verification of P(y), and hence the induction proof.

Now for the O(n) bound on the running time. It is obvious that the arguments of the recursive calls become
smaller and smaller (because y ≤ x and mod (x,y) < y). The question is, how fast? We shall show that, in
the computation of gcd(x,y), after two recursive calls the first (larger) argument is smaller than x by at least
a factor of two (assuming x > 0). There are two cases:

1. y ≤ x/2. Then the first argument in the next recursive call, y, is already smaller than x by a factor of
2, and thus in the next recursive call it will be even smaller.
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2. x ≥ y > x/2. Then in two recursive calls the first argument will be mod (x,y), which is smaller than
x/2.

So, in both cases the first argument decreases by a factor of at least two every two recursive calls. Thus
after at most 2n recursive calls, where n is the number of bits in x, the recursion will stop (note that the first
argument is always a natural number). 2

Note that the second part of the above proof only shows that the number of recursive calls in the computation
is O(n). We can make the same claim for the running time if we assume that each call only requires constant
time. Since each call involves one integer comparison and one mod operation, it is reasonable to claim that
its running time is constant. In a more realistic model of computation, however, we should really make the
time for these operations depend on the size of the numbers involved: thus the comparison would require
O(n) elementary (bit) operations, and the mod (which is really a division) would require O(n2) operations,
for a total of O(n2) operations in each recursive call. (Here n is the maximum number of bits in x or y, which
is just the number of bits in x.) Thus in such a model the running time of Euclid’s algorithm is really O(n3).

Back to Multiplicative Inverses
Let’s now return to the question of computing the multiplicative inverse of x modulo m. For any pair of
numbers x,y, suppose we could not only compute d = gcd(x,y), but also find integers a,b such that

d = ax+by. (1)

(Note that this is not a modular equation; and the integers a,b could be zero or negative.) For example, we
can write 1 = gcd(35,12) =−1 ·35+3 ·12, so here a =−1 and b = 3 are possible values for a,b.

If we could do this then we’d be able to compute inverses, as follows. If gcd(m,x) = 1, apply the above
procedure to the numbers m,x; this returns integers a,b such that

1 = am+bx.

But this means that bx≡ 1 (mod m), so b is a multiplicative inverse of x modulo m. Reducing b modulo m
gives us the unique inverse we are looking for. In the above example, we see that 3 is the multiplicative
inverse of 12 mod 35.

So, we have reduced the problem of computing inverses to that of finding integers a,b that satisfy equa-
tion (1). Now since this problem is a generalization of the basic gcd, it is perhaps not too surprising that
we can solve it with a fairly simple extension of Euclid’s algorithm. The following algorithm extended-gcd
takes as input a pair of natural numbers x≥ y as in Euclid’s algorithm, and returns a triple of integers (d,a,b)
such that d = gcd(x,y) and d = ax+by:

algorithm extended-gcd(x,y)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := extended-gcd(y, mod(x,y))
return (d, b, a - bx/yc * b)

Note that this algorithm has the same form as the basic gcd algorithm we saw earlier; the only difference is
that we now carry around in addition the required values a,b. You should hand-turn the algorithm on the
input (x,y) = (35,12) from our earlier example, and check that it delivers correct values for a,b.
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Let’s now look at why the algorithm works. In the base case (y = 0), we return the gcd value d = x as
before, together with values a = 1 and b = 0; and it’s easy to see that in this case the returned values satisfy
ax+ by = d, since 1 · x+ 0 · y = x = d. If y > 0, we first recursively compute values (d,a,b) such that
d = gcd(y, mod (x,y)) and

d = ay+b · (mod (x,y)). (2)

Just as in our analysis of the vanilla algorithm, we know that this d will be equal to gcd(x,y). So the first
component of the triple returned by the algorithm is correct.

What about the other two components? Let’s call them A and B. What should their values be? Well, from
the specification of the algorithm, they must be integers that satisfy

d = Ax+By. (3)

To figure out what A and B should be, we need to rearrange equation (2), as follows:

d = ay+b · (mod (x,y))

= ay+b · (x−bx/ycy)
= bx+(a−bx/ycb)y.

(In the second line here, we have used the fact that mod (x,y) = x−bx/ycy — check this!) Comparing this
last equation with equation (3), we see that we need to take A = b and B = a−bx/ycb. This is exactly what
the algorithm does, so we have concluded our proof of correctness.

Since the extended gcd algorithm has exactly the same recursive structure as the vanilla version, its running
time will be the same up to constant factors (reflecting the increased time per recursive call). So once again
the running time on n-bit numbers will be O(n) arithmetic operations, and O(n3) bit operations. Combining
this with our earlier discussion of inverses, we see that for any x,m with gcd(m,x) = 1 we can compute
x−1 mod m in the same time bounds.

38 CS 70, Summer 2011, Note 5



CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 6

Public-Key Cryptography, RSA, and Modular Arithmetic
This lecture, we’ll discuss a beautiful and important application of modular arithmetic: the RSA public-key
cryptosystem, so named after its inventors Ronald Rivest, Adi Shamir, and Leonard Adleman.

The basic setting for cryptography is typically described via a cast of three characters: Alice and Bob, who
wish to communicate confidentially over some (insecure) communication link, and Eve, an eavesdropper
who is listening in and trying to discover what they are saying. Suppose Alice wants to transmit a message
x (written in binary) to Bob. Alice will apply her encryption function E to x and send the encrypted message
E(x) over the communication link. Bob, upon receipt of E(x), will then apply his decryption function D to
it and thus recover the original message: i.e., D(E(x)) = x.

Since the link is insecure, Alice and Bob have to assume that Eve may get hold of E(x). (Think of Eve
as being a “sniffer” on the network.) Thus ideally we would like to know that the encryption function E is
chosen so that just knowing E(x) (without knowing the decryption function D) doesn’t allow one to discover
anything about the original message x.

For centuries cryptography was based on what are now called private-key protocols. In such a scheme,
Alice and Bob meet beforehand and together choose a secret codebook, with which they encrypt all future
correspondence between them. (This codebook plays the role of the functions E and D above.) Eve’s only
hope then is to collect some encrypted messages and use them to at least partially figure out the codebook.

Public-key schemes, such as RSA, are significantly more subtle and tricky, but simultaneously also more
useful: they allow Alice to send Bob a message without ever having met him before! This almost sounds
impossible, because in this scenario there is a symmetry between Bob and Eve: why should Bob have any
advantage over Eve in terms of being able to understand Alice’s message? The central idea behind the RSA
cryptosystem is that Bob is able to implement a digital lock, to which only he has the key. Now by making
this digital lock public, he gives Alice (or, indeed, anybody else) a way to send him a secure message which
only he can open. Intuitively, Alice (or anyone) can “apply the lock” to her message, but thereafter only Bob
can “open the lock” and recover the original message.

Here is how the digital lock is implemented in the RSA scheme. Each person has a public key known to the
whole world (the “lock”), and a private key known only to him- or herself (the “key to the lock”). When
Alice wants to send a message x to Bob, she encodes it using Bob’s public key. Bob then decrypts it using
his private key, thus retrieving x. Eve is welcome to see as many encrypted messages for Bob as she likes,
but she will not be able to decode them (under certain simple assumptions explained below).

The RSA scheme is based heavily on modular arithmetic. Let p and q be two large primes (typically having,
say, 1024 bits each), and let N = pq. We will think of messages to Bob as numbers modulo N. (Larger
messages can always be broken into smaller pieces and sent separately.)

Also, let e be any number that is relatively prime to (p− 1)(q− 1). (Typically e is a small value such as
3.) Then Bob’s public key is the pair of numbers (N,e). This pair is published to the whole world. (Note,
however, that the numbers p and q are not public; this point is crucial and we return to it below.)

What is Bob’s private key? Bob’s private key is the number d, which the RSA scheme sets to the inverse of
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e modulo (p−1)(q−1). (This inverse is guaranteed to exist because e and (p−1)(q−1) have no common
factor.)

We are now in a position to describe the RSA scheme, by defining its encryption and decryption functions:

• [Encryption]: When Alice wants to send a message x (assumed to be an integer modulo N) to Bob,
she computes the value E(x) = mod (xe,N) and sends this to Bob. Thus E(x)≡ xe (mod N).

• [Decryption]: Upon receiving the value y = E(x), Bob computes D(y) = mod(yd ,N); as we shall
prove later, this will be equal to the original message x.

Example: Let p = 5, q = 11, and N = pq = 55. (In practice, p and q would be much larger.) Then
we can choose e = 3, which is relatively prime to (p− 1)(q− 1) = 40. Therefore Bob’s public key is
(N,e) = (55,3). His private key is d = 27, since e−1 ≡ 3−1 ≡ 27 (mod 40). For any message x that Alice
(or anybody else) wishes to send to Bob, the encryption of x is y = E(x) = mod (x3,55), and the decryption
of y is D(y) = mod (y27,55). So, for example, if the message is x = 13, then the encryption is y≡ 133 ≡ 52
(mod 55), and this is decrypted as 5227 ≡ 13 (mod 55).

How do we know that the RSA scheme works? We need to check that Bob really does recover the original
message x. The following theorem establishes this fact.

Theorem 6.1: Under the above definitions of the encryption and decryption functions E and D, we have
D(E(x)) = x for every possible message x ∈ {0,1, . . . ,N−1}.
The proof of this theorem makes use of a standard fact from number theory known as Fermat’s Little Theo-
rem and a simple corollary to it, both shown below.

Theorem 6.2: [Fermat’s Little Theorem] For any prime p and any a satisfying gcd(a, p) = 1, we have
ap−1 ≡ 1 (mod p).

Proof: Consider the function f : {1,2, . . . , p− 1} → {1,2, . . . , p− 1} given by f (x) = mod(ax, p). We
proved in Theorem 5.2 that the function f is bijective. In other words, for every x1,x2 ∈ {1,2, . . . , p− 1}
with x1 6= x2, we have f (x1) 6= f (x2).

It follows that the list of numbers

mod (a, p), mod (2a, p), mod (3a, p), . . . , mod ((p−1), p)

runs through exactly the numbers 1,2,3, . . . , p− 1 (hitting each such number exactly once), albeit in some
other order.

Recall that multiplication is commutative, so re-ordering a set of factors does not affect their product. Thus,
the product of the first list is the same as the product of the second list. This remains true modulo p. So

mod (a, p)× mod (2a, p)× mod (3a, p)×·· ·× mod ((p−1), p)≡ 1×2×3×·· ·× (p−1) (mod p).

In other words,

(a)× (2a)× (3a)×·· ·× ((p−1)a)≡ 1×2×3×·· ·× (p−1) (mod p).

This equation merits careful examination. Since p is prime, it has no common factor with 2, so 2 has an
inverse modulo p. This means that we can multiply both sides by 2−1 (mod m), effectively cancelling the
factor of 2 on both sides. The same goes for each of 3,4, . . . , p−1: since p is prime, none of these has any
common factor with p, so they all have inverses and can be cancelled out.

Cancelling out these common factors, what’s left? On the left-hand side we have p− 1 factors of a, and
everything on the right-hand side gets cancelled out. In other words, we find

ap−1 ≡ 1 (mod p),
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which is what we set out to prove. 2

Lemma 6.1: For any prime p and any a,b, we have a1+b(p−1) ≡ a (mod p).

Proof: There are two cases. If a≡ 0 (mod p), then the lemma is certainly true, for 0 to any power is still 0.
If a 6≡ 0 (mod p), then gcd(a, p) = 1, so by Fermat’s Little Theorem, a1+b(p−1) ≡ a1× (ap−1)b ≡ a×1b ≡
a×1≡ a (mod p). In either case, the lemma holds. 2

Lemma 6.2: For any two different primes p,q and any x,k, we have x1+k(p−1)(q−1) ≡ x (mod pq).

Proof: Applying Lemma 6.1 with a = x and b = k(q−1), we see that x1+k(p−1)(q−1) ≡ x (mod p). There-
fore, x1+k(p−1)(q−1)− x is a multiple of p.

A second application of Lemma 6.1 shows that x1+k(p−1)(q−1) ≡ x (mod q). Therefore, x1+k(p−1)(q−1)−x is
also a multiple of q.

However, any value that is divisible by both p and q must be divisible by their product pq, so this difference
must be a multiple of pq. It follows that x1+k(p−1)(q−1) ≡ x (mod pq), as was to be shown. 2

Finally, we are ready to to prove Theorem 6.1.

Proof: Let x ∈ {0,1, . . . ,N−1} be arbitrary. Notice that

D(E(x))≡ (xe)d ≡ xed (mod pq).

Let’s look at the exponent, namely ed. By the definition of d, we know that ed ≡ 1 (mod (p−1)(q−1)).
Therefore we can write ed in the form ed = 1+ k(p− 1)(q− 1) for some integer k. Now by Lemma 6.2,
x1+k(p−1)(q−1) ≡ x (mod pq). This means that

D(E(x))≡ xed ≡ x1+k(p−1)(q−1) ≡ x (mod pq).

Since D(E(x)) ≡ x (mod N), and since both x and D(E(x)) are numbers in the set {0,1, . . . ,N − 1}, it
follows that D(E(x)) = x, which proves the theorem. 2

So we have seen that the RSA protocol is correct, in the sense that Alice can encrypt messages in such a way
that Bob can reliably decrypt them again. But how do we know that it is secure, i.e., that Eve cannot get any
useful information by observing the encrypted messages? The security of RSA hinges upon the following
simple assumption:

Given N, e, and y = mod (xe,N), there is no efficient algorithm for determining x.

This assumption is quite plausible. How might Eve try to guess x? She could experiment with all possible
values of x, each time checking whether xe ≡ y (mod N); but she would have to try on the order of N values
of x, which is completely unrealistic if N is a number with (say) 2048 bits. Alternatively, she could try to
factor N to retrieve p and q, and then figure out d by computing the inverse of e (mod (p−1)(q−1)); but
this approach requires Eve to be able to factor N into its prime factors, a problem which is believed to be
impossible to solve efficiently for large values of N. We should point out that the security of RSA has not
been formally proved: it rests on the assumptions that breaking RSA is essentially tantamount to factoring
N, and that factoring is hard.

We close this note with a brief discussion of implementation issues for RSA. Since we have argued that
breaking RSA is impossible because factoring would take a very long time, we should check that the com-
putations that Alice and Bob themselves have to perform are much simpler, and can be done efficiently.
There are really only two non-trivial things that Alice and Bob have to do:

1. Bob has to find prime numbers p and q, each having many (say, 1024) bits.
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2. Both Alice and Bob have to compute exponentials modulo N. (Alice has to compute mod (xe,N) and
Bob has to compute mod (yd ,N).)

We briefly discuss the implementation of each of these points in turn.

To find large prime numbers, we use the fact that, given a positive integer n, there is an efficient algorithm
that determines whether or not n is prime. (Here “efficient” means a running time of O((logn)k) for some
small k, i.e., a low-degree power of the number of bits in n. Notice the dramatic contrast here with factoring:
we can tell efficiently whether or not n is prime, but in the case that it is not prime we cannot efficiently find
its factors. The security of RSA hinges crucially on this distinction.) Given that we can test for primes, Bob
just needs to generate some random integers n with the right number of bits, and test them until he finds
two primes p and q. This works because of the following basic fact from number theory (which we will not
prove), which says that a reasonably large fraction of positive integers are prime:

Theorem 6.3: Prime Number Theorem Let π(n) denote the number of primes that are less than or equal
to n. Then for all n≥ 17, we have π(n)≥ n

lnn . (And in fact, limn→∞
π(n)

n/ lnn = 1.)

Setting n = 21024, for example, the Prime Number Theorem says that roughly one in every 710 of all 1024-
bit numbers are prime. Therefore, if we keep picking random 1024-bit numbers and testing them, we would
expect to have to try only about 710 numbers until we find a prime.

We turn now to the second operation: exponentiation. How does Alice compute the quantity xe (mod N)?
Note that here e could be a very large number (with a similar number of bits to N), so repeatedly multiplying
by x e−1 times is out of the question. Fortunately, Alice can do much better using the following trick known
as “repeated squaring.” Let ekek−1 . . .e1e0 be the binary representation of e (so that e0 is the least significant
bit, and e has k+1 bits in all). Then we can compute xe as follows:

• compute the powers x,x2,x4, . . . ,x2k (mod N) by repeated squaring

• compute xe by multiplying (modulo N) those powers x2i for which ei = 1.

Example: Let’s compute x27 (mod N) using the above scheme. Here e = 27, which has binary representa-
tion 11011. The above scheme first computes the powers x,x2,x4,x8,x16 (all reduced modulo N) by repeated
squaring. It then uses these powers to compute xe as the product

x27 = x16× x8× x2× x.

Note that the number of multiplications required here is only seven (four for the powers, and three for the
final product). This is much less than the e− 1 = 26 multiplications that would be required in the naive
computation.

How long does this procedure take in general? The number of powers to be computed is equal to the number
of bits in e, and each is computed using a single multiplication (squaring). Then xe itself is computed by
multiplying together some subset of these powers. Thus the total number of multiplications required is at
most twice the number of bits in e. Since e < N, the entire computation can be performed using O(logN)
multiplications of O(logN)-bit numbers, i.e., in time O((logN)3). Recall that logN is a relatively small
quantity (say, about 1024). Hence the running time here is very reasonable. The same procedure can be
used by Bob when computing the decryption function yd .

To summarize, then, in the RSA protocol Bob need only perform simple calculations such as multiplication,
exponentiation, and primality testing to implement his digital lock. Similarly, Alice and Bob need only
perform simple calculations to lock and unlock the message respectively—operations that any pocket com-
puting device could handle. By contrast, to unlock the message without the key, Eve would have to perform
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operations like factoring large numbers, which (according at least to a widely accepted belief) requires more
computational power than the world’s most powerful computers combined! This compelling guarantee of
security explains why the RSA cryptosystem is such a revolutionary development in cryptography, and why
it is so widely used in practice.

One parting caution: there are many non-trivial details in using the mathematics shown here to build a secure
system, so don’t assume that just because you have seen this math, you now know everything you need to
know to build a secure communication system. (You can learn more about these issues in CS161.)

Credits: This note is partly based on Section 1.4 of “Algorithms,” by S. Dasgupta, C. Papadimitriou and U.
Vazirani, McGraw-Hill, 2007.
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Polynomials
Recall from your high school math that a polynomial in a single variable is of the form p(x) = adxd +
ad−1xd−1 + . . .+ a0. Here the variable x and the coefficients ai are usually real numbers. For example,
p(x) = 5x3 +2x+1, is a polynomial of degree d = 3. Its coefficients are a3 = 5, a2 = 0, a1 = 2, and a0 = 1.
Polynomials have some remarkably simple, elegant and powerful properties, which we will explore in this
note.

First, a definition: we say that a is a root of the polynomial p(x) if p(a) = 0. For example, the degree
2 polynomial p(x) = x2− 4 has two roots, namely 2 and −2, since p(2) = p(−2) = 0. If we plot the
polynomial p(x) in the x-y plane, then the roots of the polynomial are just the places where the curve crosses
the x axis:

We now state two fundamental properties of polynomials that we will prove in due course.

Property 1: A non-zero polynomial of degree d has at most d roots.

Property 2: Given d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), with all the xi distinct, there is a unique polynomial
p(x) of degree (at most) d such that p(xi) = yi for 1≤ i≤ d +1.

Let us consider what these two properties say in the case that d = 1. A graph of a linear (degree 1) polynomial
y = a1x+a0 is a line. Property 1 says that if a line is not the x-axis (i.e. if the polynomial is not y = 0), then
it can intersect the x-axis in at most one point.

Property 2 says that two points uniquely determine a line.
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Polynomial Interpolation
Property 2 says that two points uniquely determine a degree 1 polynomial (a line), three points uniquely
determine a degree 2 polynomial, four points uniquely determine a degree 3 polynomial, and so on. Given
d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), how do we determine the polynomial p(x) = adxd + . . .+a1x+a0 such
that p(xi) = yi for i = 1 to d + 1? We will give two different efficient algorithms for reconstructing the
coefficients a0, . . . ,ad , and therefore the polynomial p(x).

In the first method, we write a system of d + 1 linear equations in d + 1 variables: the coefficients of the
polynomial a0, . . . ,ad . The ith equation is: adxd

i +ad−1xd−1
i + . . .+a0 = yi.

Since xi and yi are constants, this is a linear equation in the d +1 unknowns a0, . . . ,ad . Now solving these
equations gives the coefficients of the polynomial p(x). For example, given the 3 pairs (−1,2), (0,1), and
(2,5), we will construct the degree 2 polynomial p(x) which goes through these points. The first equation
says a2(−1)2 +a1(−1)+a0 = 2. Simplifying, we get a2−a1 +a0 = 2. Applying the same technique to the
second and third equations, we get the following system of equations:

a2−a1 +a0 = 2

a0 = 1

4a2 +2a1 +a0 = 5

Substituting for a0 and multiplying the first equation by 2 we get:

2a2−2a1 = 2

4a2 +2a1 = 4

Then, adding down we find that 6a2 = 6, so a2 = 1, and plugging back in we find that a1 = 0. Thus, we
have determined the polynomial p(x) = x2 + 1. To justify this method more carefully, we must show that
the equations always have a solution and that it is unique. This involves showing that a certain determinant
is non-zero. We will leave that as an exercise, and turn to the second method.

The second method is called Lagrange interpolation: Let us start by solving an easier problem. Suppose
that we are told that y1 = 1 and y j = 0 for 2 ≤ j ≤ d +1. Now can we reconstruct p(x)? Yes, this is easy!
Consider q(x) = (x− x2)(x− x3) · · ·(x− xd+1). This is a polynomial of degree d (the xi’s are constants,
and x appears d times). Also, we clearly have q(x j) = 0 for 2 ≤ j ≤ d + 1. But what is q(x1)? Well,
q(x1) = (x1−x2)(x1−x3) · · ·(x1−xd+1), which is some constant not equal to 0 (since the xi are all distinct).
Thus if we let p(x) = q(x)/q(x1) (dividing is ok since q(x1) 6= 0), we have the polynomial we are looking
for. For example, suppose you were given the pairs (1,1), (2,0), and (3,0). Then we can construct the
degree d = 2 polynomial p(x) by letting q(x) = (x−2)(x−3) = x2−5x+6, and q(x1) = q(1) = 2. Thus,
we can now construct p(x) = q(x)/q(x1) = (x2−5x+6)/2.

Of course the problem is no harder if we single out some arbitrary index i instead of 1. In other words, if
we want to find a polynomial such that yi = 1 and y j = 0 for j 6= i, we can do that. Let us introduce some
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notation: let us denote by ∆i(x) the degree d polynomial that goes through these d+1 points, i.e., ∆i(xi) = 1
and ∆i(x j) = 0 when j 6= i. Then

∆i(x) =
∏ j 6=i(x− x j)

∏ j 6=i(xi− x j)
.

Let us now return to the original problem. Given d +1 pairs (x1,y1), . . . ,(xd+1,yd+1), we first construct the
d +1 polynomials ∆1(x), . . . ,∆d+1(x). Now the polynomial we are looking for is

p(x) =
d+1

∑
i=1

yi∆i(x).

Why does this work? First notice that p(x) is a polynomial of degree d as required, since it is the sum of
polynomials of degree d. And when it is evaluated at xi, d of the d + 1 terms in the sum evaluate to 0 and
the ith term evaluates to yi times 1, as required.

As an example, suppose we want to find the degree-2 polynomial p(x) that passes through the three points
(1,1), (2,2) and (3,4). We have d = 2 and xi = i. The three polynomials ∆i are thus as follows:

∆1(x) =
(x−2)(x−3)
(1−2)(1−3)

=
(x−2)(x−3)

2
=

1
2

x2− 5
2

x+3;

∆2(x) =
(x−1)(x−3)
(2−1)(2−3)

=
(x−1)(x−3)

−1
=−x2 +4x−3;

∆3(x) =
(x−1)(x−2)
(3−1)(3−2)

=
(x−1)(x−2)

2
=

1
2

x2− 3
2

x+1.

The polynomial p(x) is therefore given by

p(x) = 1 ·∆1(x)+2 ·∆2(x)+4 ·∆3(x) =
1
2

x2− 1
2

x+1.

You should verify that this polynomial does indeed pass through the above three points.

Property 2 and Uniqueness
We have shown how to find a polynomial p(x) that passes through any given (d + 1) points. This proves
part of Property 2 (the existence of the polynomial). How do we prove the second part, that the polynomial
is unique? Suppose for contradiction that there is another polynomial q(x) that also passes through the
d +1 points. Now consider the polynomial r(x) = p(x)−q(x). This is a non-zero polynomial of degree at
most d. So by Property 1 it can have at most d roots. But on the other hand r(xi) = p(xi)− q(xi) = 0 for
i = 1, . . . ,d+1, so r(x) has d+1 distinct roots. Contradiction. Therefore p(x) is the unique polynomial that
satisfies the d +1 conditions.

Property 1
Now let us turn to Property 1. We will prove this property in two steps.

Theorem 7.1: a is a root of p(x) if and only if the polynomial x−a divides p(x).

Proof: Dividing p(x) by the polynomial x−a yields

p(x) = (x−a)q(x)+ r(x)

for some polynomials q(x) and r(x), where q(x) is the quotient and r(x) is the remainder. The degree of r(x)
is necessarily smaller than the degree of the divisor (x−a). Therefore r(x) must have degree 0 and therefore
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is some constant c, so r(x) = c. Now substituting x = a, we get p(a) = 0 ·q(a)+ r(a) = c. If a is a root of
p(x), then p(a) = 0, so c = 0 and therefore p(x) = (x−a)q(x), thus showing that (x−a) divides p(x).

On the other hand, if x−a divides p(x), then we know that r(x) = 0 and p(x) = (x−a)q(x), hence p(a) =
0 ·q(a) = 0 and in particular a is a root of p(x). 2

Theorem 7.2: If a1, . . . ,ad are d distinct roots of a polynomial p(x) of degree d, then p(x) has no other
roots.

Proof: We will show that p(x) = c(x− a1)(x− a2) · · ·(x− ad) for some constant c. First, observe that
p(x) = (x− a1)q1(x) for some polynomial q1(x) of degree d − 1, since a1 is a root. Also 0 = p(a2) =
(a2 − a1)q1(a2) since a2 is a root. But since a2 − a1 6= 0, it follows that q1(a2) = 0, i.e., a2 is a root
of q1. So q1(x) = (x− a2)q2(x), for some polynomial q2(x) of degree d− 2. Proceeding in this manner
by induction, we find that p(x) = (x− a1)(x− a2) · · ·(x− ad)qd(x) for some polynomial qd(x) of degree
0. A polynomial of degree 0 must be of the form qd(x) = c for some constant c, so we’ve shown that
p(x) = c(x−a1)(x−a2) · · ·(x−ad) for some constant c, as claimed.

The theorem follows immediately. If a is any other value, different from a1, . . . ,ad , then a− ai 6= 0 for all
i and hence p(a) = c(a−a1)(a−a2) · · ·(a−ad) 6= 0. In other words, no other value a can be a root of the
polynomial p(x). 2

This completes the proof that a polynomial of degree d has at most d roots.

Finite Fields
Property 1 and Property 2 were stated under the assumption that the coefficients of the polynomials and the
variable x range over the real numbers. These properties also hold if we use the set of rational numbers, or
even the set of complex numbers, instead of the real numbers.

However, the properties do not hold if the values are restricted to the set of natural numbers or integers. Let
us try to understand this a little more closely. The only properties of numbers that we used in polynomial
interpolation and in the proof of Property 1 is that we can add, subtract, multiply and divide any pair of
numbers as long as we are not dividing by 0. We cannot subtract two natural numbers and guarantee that
the result is a natural number. And dividing two integers does not usually result in an integer. As a result,
our proof of Property 1 does not generalize to the case where the values are restricted to N or Z.

But if we work with numbers modulo a prime m, then we can add, subtract, multiply and divide (by any
non-zero number modulo m). To check this, recall from our discussion of modular arithmetic in the previous
notes that x has an inverse mod m if gcd(m,x) = 1. Thus if m is prime all the numbers {1, . . . ,m−1} have
an inverse mod m. So both Property 1 and Property 2 hold if the coefficients and the variable x are restricted
to take on values modulo m. This remarkable fact that these properties hold even when we restrict ourselves
to a finite set of values is the key to several applications that we will presently see.

First, let’s see an example of these properties holding in the case of polynomials of degree d = 1 modulo
5. Consider the polynomial p(x) ≡ 4x+ 3 (mod 5). The roots of this polynomial are all values x such
that 4x + 3 ≡ 0 (mod 5). Solving for x, we get that 4x ≡ 2 (mod 5), or x ≡ 3 (mod 5). (In this last
step we multiplied through by the inverse of 4 mod 5, which is 4.) Thus, we found only 1 root for a
degree 1 polynomial. Now, given the points (0,3) and (1,2), we will reconstruct the degree 1 polynomial
p(x) modulo 5. Using Lagrange interpolation, we get that ∆1(x) ≡ x−x2

x1−x2
≡ x−1

0−1 ≡ −(x− 1) (mod 5), and
∆2(x) ≡ x−x1

x2−x1
≡ x−0

1−0 ≡ x (mod 5). Thus, p(x) ≡ 3 ·∆1(x)+2 ·∆2(x) ≡ −3(x−1)+2x ≡ −x+3 ≡ 4x+3
(mod 5).

When we work with numbers modulo a prime m, we are working over finite fields, denoted by Fm or
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GF(m) (for Galois Field). In order for a set to be called a field, it must satisfy certain axioms which
are the building blocks that allow for these amazing properties and others to hold. Intuitively, a field is
a set where we can add, subtract, multiply, and divide any pair of elements from the set, and we will get
another element in the set (as long as we don’t try to divide by 0). If you would like to learn more about
fields and the axioms they satisfy, you can visit Wikipedia’s site and read the article on fields: http:
//en.wikipedia.org/wiki/Field_%28mathematics%29. While you are there, you can also
read the article on Galois Fields and learn more about some of their applications and elegant properties
which will not be covered in this lecture: http://en.wikipedia.org/wiki/Galois_field.

We said above that it is remarkable that Properties 1 and 2 continue to hold when we restrict all values to
a finite set modulo a prime number m. To see why this is remarkable let us see what the graph of a linear
polynomial (degree 1) looks like modulo 5. There are now only 5 possible choices for x, and only 5 possible
choices for y. Consider the polynomials p(x) ≡ 2x+ 3 (mod 5) and q(x) ≡ 3x− 2 (mod 5) over GF(5).
We can represent these polynomials in the x-y plane as follows:

Notice that these two “lines” intersect in exactly one point, even though the picture looks nothing at all like
lines in the Euclidean plane! Modulo 5, two lines can still intersect in at most one point, and that is thanks
to the properties of addition, subtraction, multiplication, and division modulo 5.

Finally, you might wonder why we chose m to be a prime. Let us briefly consider what would go wrong
if we chose m not to be prime, for example m = 6. Now we can no longer divide by 2 or 3. In the proof
of Property 1, we asserted that p(a) = c(a− a1)(a− a2) · · ·(a− ad) 6= 0 if a 6= ai for all i. But when we
are working modulo 6, if a− a1 ≡ 2 (mod 6) and a− a2 ≡ 3 (mod 6), these factors are non-zero, but
(a−a1)(a−a2)≡ 2 ·3≡ 0 (mod 6). Working modulo a prime ensures that this disaster cannot happen.

Counting
How many polynomials of degree (at most) 2 are there modulo m? This is easy: there are 3 coefficients,
each of which can take on m distinct values, so there are a total of m×m×m = m3 such polynomials.
Equivalently, each of the polynomials is uniquely specified by its values at three points, say at x = 1, x = 2
and x = 3; and there are m3 choices for these three values, each of which yields a distinct polynomial.

Now suppose we are given three pairs (x1,y1),(x2,y2),(x3,y3). Then by Property 2, there is a unique polyno-
mial of degree 2 such that p(xi) = yi for 1≤ i≤ 3. Suppose we were only given two pairs (x1,y1),(x2,y2);
how many distinct degree 2 polynomials are there that go through these two points? Here is a slick way
of working this out. Fix any x3, and notice that there are exactly m choices for y3. Once three points are
specified, by Property 2 there is a unique polynomial of degree 2 that goes through these three points. Since
this is true for each of the m ways of choosing y3, it follows that there are m polynomials of degree at most
2 that go through the 2 points (x1,y1),(x2,y2). This is illustrated below:
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What if you were only given one point? Well, there are m choices for the second point, and for each of these
there are m choices for the third point, yielding a total of m2 polynomials of degree at most 2 that go through
the point given. A pattern begins to emerge, as is summarized in the following table:

Polynomials of degree ≤ d over Fm

# of points given # of polynomials
d +1 1

d m
d−1 m2

...
...

d− k mk+1

The reason that we can count the number of polynomials is because we are working over a finite field. If
we were working over an infinite field such as the rationals, there would be infinitely many polynomials of
degree d that can go through d points. Think of a line, which has degree one. If you were just given one
point, there would be infinitely many possibilities for the second point, each of which uniquely defines a
line.

Secret Sharing
In the late 1950’s and into the 1960’s, during the Cold War, President Dwight D. Eisenhower approved
instructions and authorized top commanding officers for the use of nuclear weapons under very urgent
emergency conditions. Such measures were set up in order to defend the United States in case of an attack
in which there was not enough time to confer with the President and decide on an appropriate response. This
would allow for a rapid response in case of a Soviet attack on U.S. soil. This is a perfect situation in which a
secret sharing scheme could be used to ensure that a certain number of officials must come together in order
to successfully launch a nuclear strike, so that for example no single person has the power and control over
such a devastating and destructive weapon.

Suppose the U.S. government decides that a nuclear strike can be initiated only if at least k major officials
agree to it, for some k > 1. Suppose that missiles are protected by a secret launch code; the missile will
only launch if it is supplied with the proper launch code. Let’s devise a scheme such that (1) any group of
k of these officials can pool their information to figure out the launch code and initiate the strike, but (2)
no group of k−1 or fewer have any information about the launch code (not even partial information), even
if they pool their knowledge. For example, a group of k− 1 conspiring officials should not be able to tell
whether the secret launch code is odd or even; whether it is a prime number or not; whether it is divisible by
some number a; or whether its least significant bit is 0 or 1. How can we accomplish this?

We’ll presume that there are n officials indexed from 1 to n and that the secret launch code is some natural
number s. Let q be a prime number larger than n and s. We will work over GF(q) from now on, i.e., we will
be working modulo q.
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The scheme is simple. We pick a random polynomial P(x) of degree k−1 such that P(0) = s. Then, we give
the share P(1) to the first official, P(2) to the second official, . . . , P(n) to the nth official.

This satisfies our two desiderata:

1. Any k officials, having the values of the polynomial at k points, can use Lagrange interpolation to find
P(x). Once they know the polynomial P(x), they can recover the secret s by computing s = P(0).

2. What about some group of k−1 conspiring officials? They don’t have enough information to recover
the polynomial P(x). All they know is that there is some polynomial of degree k−1 passing through
their k− 1 points. However, for each possible value P(0) = b, there is a unique polynomial that is
consistent with the information of the k−1 officials, and that also satisfies the constraint that P(0) = b.
This means that any conjectured value of the secret is consistent with the information available to the
k−1 conspirators, so the conspirators cannot rule out any hypothesized value for P(0) as impossible.
In short, the conspirators learn nothing about P(0) = s.

This scheme is known as Shamir secret sharing, in honor of its inventor, Adi Shamir.

Example. Suppose you are in charge of setting up a secret sharing scheme, with secret s = 1, where you
want to distribute n = 5 shares to 5 people such that any k = 3 or more people can figure out the secret, but
two or fewer cannot. We will need a polynomial of degree k−1 = 2. Let’s say we are working over GF(7)
and you randomly choose the polynomial P(x) = 3x2 + 5x+ 1. (Notice: P(0) = 1 = s, the secret.) So you
know everything there is to know about the secret and the polynomial, but what about the people that receive
the shares? Well, the shares handed out are P(1) ≡ 3 · 12 + 5 · 1+ 1 ≡ 9 ≡ 2 (mod 7) to the first official,
P(2)≡ 3 ·22 +5 ·2+1≡ 23≡ 2 (mod 7) to the second, P(3)≡ 3 ·32 +5 ·3+1≡ 43≡ 1 (mod 7) to the
third, P(4) ≡ 6 (mod 7) to the fourth, and P(5) ≡ 3 to the fifth official. Let’s say that officials 3, 4, and 5
get together. We expect them to be able to recover the secret. Using Lagrange interpolation, they compute
the following functions:

∆3(x)≡
(x−4)(x−5)
(3−4)(3−5)

≡ (x−4)(x−5)
2

≡ 4(x−4)(x−5) (mod 7)

∆4(x)≡
(x−3)(x−5)
(4−3)(4−5)

≡ (x−3)(x−5)
−1

≡−(x−3)(x−5) (mod 7)

∆5(x)≡
(x−3)(x−4)
(5−3)(5−4)

≡ (x−3)(x−4)
2

≡ 4(x−3)(x−4) (mod 7).

They then compute the polynomial P(x) = 1 ·∆3(x)+6 ·∆4(x)+3 ·∆5(x)≡ 3x2 +5x+1 (you should verify
this computation!). Now they simply compute P(0) and discover that the secret is 1.

Let’s see what happens if two officials try to get together, say persons 1 and 5. They both know that the
polynomial looks like P(x) = a2x2 +a1x+ s. They also know the following equations:

P(1)≡ a2 +a1 + s≡ 2 (mod 7)

P(5)≡ 4a2 +5a1 + s≡ 3 (mod 7)

But that is all they have, 2 equations with 3 unknowns, and thus they cannot find out the secret. This is the
case no matter which two officials get together. Notice that since we are working over GF(7), the two people
could have guessed the secret (0≤ s≤ 6) and identified a unique degree 2 polynomial that’s consistent with
their guess (by Property 2). But the two people combined have the same chance of guessing what the secret
is as they do individually. This is important, as it implies that two people have no more information about
the secret than one person does—in particular, these two people have no information about the secret, not
even partial information.
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Error Correcting Codes
Erasure Errors
We will consider the situation where we wish to transmit information over an unreliable communication
channel. This is exemplified by the internet, where the information (say a file) is broken up into fixed-length
packets, and the unreliability is manifest in the fact that some of the packets may be lost during transmission,
as shown below:

Suppose that, in the absence of packet loss, it would take n packets to send the entire message—but in reality
up to k packets may be lost during transmission. We will show how to encode the initial message consisting
of n packets into a redundant encoding consisting of n+ k packets such that the recipient can reconstruct
the message from any n received packets. We will assume that the packets are labeled and thus the recipient
knows exactly which packets were dropped during transmission.

In our scheme, the contents of each packet is a number modulo q, where q is a prime. For example, a
32-bit string can be regarded as a number between 0 and 232− 1; then we could choose q to be any prime
larger than 232 and view it as a number modulo q. The properties of polynomials over GF(q) (i.e., with
coefficients and values reduced modulo q) are perfectly suited to solve this problem and are the backbone of
this error-correcting scheme. To see this, let us denote the message to be sent by m1, . . . ,mn. Then we can
form a polynomial P(x) of degree n−1 by setting P(x) = mnxn−1+ · · ·+m3x2+m2x+m1. This polynomial
encodes all of the information in the message: if we can somehow communicate the polynomial to the
recipient over the unreliable communication channel, then the recipient can recover the message m1, . . . ,mn

from P(x). Therefore, we can consider the message to be given by the polynomial P(x).

We generate the encoded packets to be sent over the channel by evaluating P(x) at n+k points. In particular,
we will transmit the following n+ k packets: c1 = P(1), c2 = P(2), . . . , cn+k = P(n+ k). In particular,
we transmit n+ k numbers, where each number is in the range 0 . . .q− 1. Notice that the transmission
is redundant: it contains more packets than the original message, to deal with lost packets. (A technical
restriction: since we are working modulo q, we must make sure that n+ k ≤ q, to ensure that the numbers
1,2, . . . ,n+ k are all distinct modulo q. However, this condition does not impose a serious constraint, since
in practice q will typically be very large.)

Here is the key point: the recipient can uniquely reconstruct P(x) from its values at any n distinct points,
since it has degree n− 1. This means that the recipient can reconstruct P(x) from any n of the transmitted
packets (e.g., by using Lagrange interpolation). The coefficients of this reconstructed polynomial P(x)
reveal the original message m1, . . . ,mn. Therefore, as long as no more than k packets are lost—as long as the
recipient receives at least n of the n+ k encoded packets—the recipient will be able to recover the message
that the sender wanted to send.
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Example. Suppose Alice wants to send Bob a message of n = 4 packets and she wants to guard against up
to k = 2 lost packets. Then, assuming the packets can be coded as integers between 0 and 6, Alice can work
over GF(7) (since 7≥ n+ k = 6). Suppose the message that Alice wants to send to Bob is m1 = 5, m2 = 0,
m3 = 4, and m4 = 1. The polynomial with these coefficients is P(x) = x3 +4x2 +5.

Alice must evaluate P(x) at n+ k = 6 points, namely, at x = 1,2, . . . ,6. The encoded packets are

c1 = P(1) = 3

c2 = P(2) = 1

c3 = P(3) = 5

c4 = P(4) = 0

c5 = P(5) = 6

c6 = P(6) = 1.

(Remember that all arithmetic is done in GF(7), i.e., modulo 7, so everything is reduced modulo 7.) Since
k = 2, Alice must evaluate P(x) at 2 extra points: Suppose packets 2 and 6 are dropped, in which case we
have the following situation:

10513 6

(c1, c2, c3, c4, c5, c6)

Encoded message

2 4 5 61 3

053 6

Bob receives

2 4 5 61 3

(c1, −, c3, c4, c5, −)

From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing delta functions:

∆1(x) =
(x−3)(x−4)(x−5)

−24

∆3(x) =
(x−1)(x−4)(x−5)

4

∆4(x) =
(x−1)(x−3)(x−5)

−3

∆5(x) =
(x−1)(x−3)(x−4)

8
.

He then reconstructs the polynomial P(x) = 3∆1(x)+ 5∆3(x)+ 0∆4(x)+ 6∆5(x) = x3 + 4x2 + 5. Bob then
reads off the coefficients to recover the original message Alice wanted to send: m1 = 5, m2 = 0, m3 = 4,
m4 = 1. More generally, no matter which two packets were dropped, following the same method Bob could
still have reconstructed P(x) and thus the original message.

Let us consider what would happen if Alice sent one fewer packet. If Alice only sent c1, . . . ,c5, then after 2
packets are lost, Bob would only receive c j for 3 distinct values j. Thus, Bob would not be able to reconstruct
P(x) (since there are exactly q polynomials of degree at most 3 that agree with the 3 encoded packets which
Bob received). This error-correcting scheme is therefore optimal: it can recover the n characters of the
transmitted message from any n received characters, but recovery from any fewer characters is impossible.

General Errors
The main shortcoming of the scheme described above is that it only deals with lost packets. What if up
to k packets might be corrupted or modified in transmission, so the affected packet is received incorrectly
by Alice? The scheme above cannot handle that. In fact, it turns out that, with some additional work, the
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scheme can be made to handle corrupted packets. We will need to send n+2k encoded packets, instead of
just n+ k, and we will need a more sophisticated decoding procedure. We won’t cover the details in this
class, but many of the main ideas still apply, and again polynomials and modular arithmetic hold the key.
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Counting
In the next major topic of the course, we will be looking at probability. Suppose you toss a fair coin a
thousand times. How likely is it that you get exactly 500 heads? And what about 1000 heads? It turns out
that the chances of 500 heads are roughly 5%, whereas the chances of 1000 heads are so infinitesimally
small that we may as well say that it is impossible. But before you can learn to compute or estimate odds or
probabilities you must learn to count! That is the subject of this note.

We will learn how to count the number of outcomes while tossing coins, rolling dice and dealing cards.
Many of the questions we will be interested in can be cast in the following simple framework, called the
occupancy model:

Balls & Bins: We have a set of k balls. We wish to place them into n bins. How many different possible
outcomes are there?

How do we represent coin tossing and card dealing in this framework? Consider the case of n = 2 bins
labelled H and T , corresponding to the two outcomes of a coin toss. The placement of the k balls correspond
to the outcomes of k successive coin tosses. To model card dealing, consider the situation with 52 bins
corresponding to a deck of cards. Here the balls correspond to successive cards in a deal.

The two examples illustrate two different constraints on ball placements. In the coin tossing case, different
balls can be placed in the same bin. This is called sampling with replacement. In the cards case, no bin
can contain more than one ball (i.e., the same card cannot be dealt twice). This is called sampling without
replacement. As an exercise, what are n and k for rolling dice? Is it sampling with or without replacement?

We are interested in counting the number of ways of placing k balls in n bins in each of these scenarios. This
is easy to do by applying the first rule of counting:

First Rule of Counting: If an object can be made by a succession of k choices, where there are n1 ways
of making the first choice, and for every way of making the first choice there are n2 ways of making the
second choice, and for every way of making the first and second choice there are n3 ways of making the
third choice, and so on up to the nk-th choice, then the total number of distinct objects that can be made in
this way is the product n1×n2×n3×·· ·×nk.

Here is another way of picturing this rule: consider a tree with branching factor n1 at the root, n2 at every
node at the second level, ..., nk at every node at the k-th level. Then the number of leaves in the tree is the
product n1× n2× n3×·· ·× nk. For example, if n1 = 2, n2 = 2, and n3 = 3, then there are 12 leaves (i.e.,
outcomes):
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Let us apply this counting rule to figuring out the number of ways of placing k balls in n bins with replace-
ment, if the balls are numbered from 1 to k. This is easy; it is just nk: n choices for the first ball, n for the
second, and so on.

The rule is more interesting in the case of sampling without replacement. Now there are n ways of placing
the first ball, and no matter where it is placed there are exactly n−1 bins in which the second ball may be
placed (exactly which n−1 depends upon which bin the first ball was placed in, but the number of choices
is always n−1), and so on. So as long as k≤ n, the number of placements is n(n−1) · · ·(n−k+1) = n!

(n−k)! .
(By convention we define 0! = 1.)

Counting Unordered Sets
When dealing a hand of cards, say a poker hand, it is more natural to count the number of distinct hands
(i.e., the set of 5 cards dealt in the hand), without regard to the order in which the cards in our hand were
dealt to us. To count this number we use the second rule of counting:

Second Rule of Counting: If an object is made by a succession of choices, and the order in which the
choices is made does not matter, count the number of ordered objects (pretending that the order matters),
and divide by the number of ordered objects per unordered object. Note that this rule can only be applied if
the number of ordered objects is the same for every unordered object.

Let us continue with our example of a poker hand. We wish to calculate the number of ways of choosing 5
cards out of a deck of 52 cards. So we first count the number of ways of dealing a 5-card hand pretending
that we care which order the cards are dealt in. This is exactly 52!

47! as we computed above. Now we ask: for
a given poker hand, in how many ways could it have been dealt? The 5 cards in the given hand could have
been dealt in any one of 5! ways. Therefore, by the second rule of counting, the number of poker hands is

52!
47!×5! .

This quantity n!
(n−k)!k! is used so often that there is special notation for it:

(n
k

)
, pronounced n choose k. This

is the number of ways of placing k balls in n bins (without replacement), where the order of placement does
not matter. Equivalently, it’s the number of ways of choosing k objects out of a total of n objects, where the
order of the choices does not matter.

What about the case of sampling with replacement? How many ways are there of placing k balls in n bins
with replacement when the order does not matter? Let us try to use the second rule of counting. There are
nk ordered placements. How many ordered placements are there per unordered placement? Unfortunately
this depends on which unordered placement we are considering. For example, when k = 2 (two balls), if the
two balls are in distinct bins then there are two corresponding ordered placements, while if they are in the
same bin then there is just one corresponding ordered placement. Thus we have to consider these two cases
separately. In the first case, there are n ways to place the first ball, and n−1 ways to place the second ball,
giving us n(n−1) corresponding ordered placements; by the second rule of counting, we divide by 2 and get
n(n−1)

2 unordered placements of the balls in distinct bins. In the second case, there are n ways to place both
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balls in the same bin; by the second rule of counting, we divide by 1 and get n unordered placements for
the balls in the same bin. Putting both cases together, there are n(n−1)

2 +n = n(n+1)
2 ways to place two balls

into n bins where order does not matter. For larger values of k, it seems hopelessly complicated. Yet there
is a remarkably slick way of calculating this number. Represent each of the balls by a 0 and the separations
between boxes by 1’s. So we have k 0’s and (n− 1) 1’s. Each placement of the k balls in the n boxes
corresponds uniquely to a binary string with k 0’s and (n−1) 1’s. Here is a sample placement of k = 4 balls
into n = 5 bins and how it can be represented as a binary string:

But the number of such binary strings is easy to count: we have n+ k− 1 positions, and we must choose
which k of them contain 0’s. So the answer is

(n+k−1
k

)
.

Combinatorial Proofs
Combinatorial arguments are interesting because they rely on intuitive counting arguments rather than al-
gebraic manipulation. For example, it is true that

(n
k

)
=
( n

n−k

)
. Though you may be able to prove this fact

rigorously by definition of
(n

k

)
and algebraic manipulation, some proofs are actually much more tedious and

difficult. Instead, we will try to discuss what each term means, and then see why the two sides are equal.
When we write

(n
k

)
, we are really counting how many ways we can choose k objects from n objects. But

each time we choose any k objects, we must also leave behind n− k objects, which is the same as choos-
ing n− k (to leave behind). Thus,

(n
k

)
=
( n

n−k

)
. Some facts are less trivial. For example, it is true that(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
. The two terms on the right hand side are splitting up choosing k from n objects into

two cases: we either choose the first element, or we do not. To count the number of ways where we choose
the first element, we have k− 1 objects left to choose, and only n− 1 objects to choose from, and hence(n−1

k−1

)
ways. For the number of ways where we don’t choose the first element, we have to pick k objects

from n−1 this time, giving
(n−1

k

)
ways. [Exercise: Check algebraically that the above formula holds.]

We can also prove even more complex facts, such as
( n

k+1

)
=
(n−1

k

)
+
(n−2

k

)
+ · · ·+

(k
k

)
. What does the right

hand side really say? It is splitting up the process into cases according to the first (i.e., lowest-numbered)
object we select. These cases can be summarized as follows:

If the first element selected is. . . then the number of combinations is. . .
element 1

(n−1
k

)
element 2

(n−2
k

)
element 3

(n−3
k

)
...

...

element n− k
(k

k

)
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(Note that the lowest-numbered object we select cannot be higher than n− k as we have to select k distinct
objects.)

The last combinatorial proof we will do is the following:
(n

0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n. To see this, imagine that

we have a set S with n elements. On the left hand side, the ith term counts the number of ways of choosing
a subset of S of size exactly i; so the sum on the left hand side counts the total number of subsets (of any
size) of S. But we claim that the right hand side (2n) does indeed also count the total number of subsets. To
see this, just identify a subset with an n-bit vector, where in each position j we put a 1 if the jth element
is in the subset, and a 0 otherwise. So the number of subsets is equal to the number of n-bit vectors, which
is 2n. Let us look at an example, where S = {1,2,3} (so n = 3). Enumerate all 23 = 8 possible subsets of
S: {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. The term

(3
0

)
counts the number of ways to choose a

subset of S with 0 elements; there is only one such subset, namely the empty set. There are
(3

1

)
= 3 ways

of choosing a subset with 1 element,
(3

2

)
= 3 ways of choosing a subset with 2 elements, and

(3
3

)
= 1 way

of choosing a subset with 3 elements (namely, the subset consisting of the whole of S). Summing, we get
1+3+3+1 = 8, as expected.
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 10

Introduction to Discrete Probability
Probability theory has its origins in gambling — analyzing card games, dice, roulette wheels. Today it is
an essential tool in engineering and the sciences. No less so in electrical engineering and computer science,
where its use is widespread in algorithms, systems, learning theory, artificial intelligence, communications,
control theory and signal processing.

Here are some typical statements that you might see concerning probability:

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

2. The chance that this randomized primality testing algorithm outputs “prime” when the input is not
prime is at most one in a trillion.

3. In this load-balancing scheme, the probability that any processor has to deal with more than 12 re-
quests is negligible.

4. The average time between system failures is about 3 days.

5. There is a 30% chance of a magnitude 8.0 earthquake in Northern California before 2030.

Implicit in all such statements is the notion of an underlying probability space. This may be the result of a
random experiment that we have ourselves constructed (as in 1, 2 and 3 above), or some model we build of
the real world (as in 4 and 5 above). None of these statements makes sense unless we specify the probability
space we are talking about: for this reason, statements like 5 (which are typically made without this context)
are almost content-free.

Let us try to understand all this more clearly. The first important notion here is that of a random experiment.
An example of such an experiment is tossing a coin 4 times, or dealing a poker hand. In the first case an
outcome of the experiment might be HT HT or it might be HHHT . The question we are interested in
might be “what is the chance that there are exactly two H’s?” Well, the number of outcomes that meet this
condition is

(4
2

)
= 4!

2!2! = 6 (corresponding to choosing the positions of the two H’s in the sequence of four
tosses); these outcomes are HHT T , HT HT , HT T H, T HHT , T HT H, T T HH. On the other hand, the total
number of distinct outcomes for this experiment is 24 = 16. If the coin is fair then all these 16 outcomes are
equally likely, so the chance that there are exactly two H’s is 6/16 = 3/8.

Now some terminology. The outcome of a random experiment is called a sample point. Thus HT HT is an
example of a sample point. The sample space, often denoted by Ω, is the set of all possible outcomes. In
our example the sample space has 16 elements:
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A probability space is a sample space Ω, together with a probability Pr[ω] for each sample point ω , such
that

• 0≤ Pr[ω]≤ 1 for all ω ∈Ω.

• ∑
ω∈Ω

Pr[ω] = 1, i.e., the sum of the probabilities of all outcomes is 1.

The easiest way to assign probabilities to sample points is to give all of them the same probability (as we
saw earlier in the coin tossing example): if |Ω| = N, then Pr[x] = 1

N ∀x ∈ Ω. This is known as a uniform
distribution. We will see examples of non-uniform probability assignments soon.

Here’s another example: dealing a poker hand. In this case, our sample space Ω = {all possible poker
hands}, which corresponds to choosing k = 5 objects without replacement from a set of size n = 52 where
order does not matter. Hence, as we saw in the previous Note, |Ω| =

(52
5

)
= 52×51×50×49×48

5×4×3×2×1 = 2,598,960.
Since the probability of each outcome is equally likely, the probability of any particular hand is the reciprocal
of the size of the sample space. For instance, Pr[{5♥,3♣,7♠,8♣,K♥}] = 1

2,598,960 .

As we saw in the coin tossing example above, after performing an experiment we are often interested only
in knowing whether a certain event occurred. Thus we considered the event that there were exactly two H’s
in the four tosses of the coin. Here are some more examples of events we might be interested in:

• The sum of the rolls of 2 dice is ≥ 10.

• The poker hand idealt to you is a flush (i.e., all 5 cards have the same suit).

• In n coin tosses, at least n
3 of the tosses come up tails.

Let us now formalize the notion of an event. Formally, an event A is just a subset of the sample space,
A⊆Ω. As we saw above, the event “exactly 2 H’s in four tosses of the coin” is the subset
{HHT T,HT HT,HT T H,T HHT,T HT H,T T HH} ⊆Ω.

How should we define the probability of an event A? Naturally, we should just add up the probabilities of
the sample points in A.

For any event A⊆Ω, we define the probability of A to be

Pr[A] = ∑
ω∈A

Pr[ω].

Thus the probability of getting exactly two H’s in four coin tosses can be calculated using this definition as
follows. The event A consists of all sequences that have exactly two H’s, and so |A| =

(4
2

)
= 6. There are
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|Ω|= 24 = 16 possible outcomes for flipping four coins. Thus, each sample point ω ∈ A has probability 1
16 ;

and, as we saw above, there are six sample points in A, giving us Pr[A] = 6 · 1
16 = 3

8 .

We will now look at examples of probability spaces and typical events that may occur in such experiments.

1. Flip a fair coin. Here Ω = {H,T}, and Pr[H] = Pr[T ] = 1
2 .

2. Flip a fair coin three times. Here Ω = {(t1, t2, t3) : ti ∈ {H,T}}, where ti gives the outcome of the ith
toss. Thus Ω consists of 23 = 8 points, each with equal probability 1

8 . More generally, if we flip the
coin n times, we get a sample space of size 2n (corresponding to all sequences of length n over the
alphabet {H,T}), each sample point having probability 1

2n . We can look, for example, at the event
A that all three coin tosses are the same. Then A = {HHH,T T T}, with each sample point having
probability 1

8 . Thus, Pr[A] = Pr[HHH]+Pr[T T T ] = 1
8 +

1
8 = 1

4 .

3. Flip a biased coin once. Suppose the bias is two-to-one in favor of Heads, i.e., it comes up Heads with
probability 2

3 and Tails with probability 1
3 . The sample space here is exactly the same as in the first

example, but the probabilities are different: Pr[H] = 2
3 ,Pr[T ] = 1

3 . This is the first example in which
the sample points have non-uniform probabilities.

4. Flip the biased coin in the previous example three times. The sample space is exactly the same as in
the second example, but it is not immediately obvious how to assign probabilities to the sample points.
This is because the bias of the coin only tells us how to assign probabilities to the outcome of one flip,
not the outcome of multiple flips. It is, however, clear that the probabilities of the outcomes should
not be uniform. We will return to this example after learning the important notion of independence in
the next Note.

5. Roll two fair dice. Then Ω = {(i, j) : 1≤ i, j≤ 6}. Each of the 36 outcomes has equal probability, 1
36 .

We can look at the event A that the sum of the dice is at least 10, and the event B that there is at
least one 6. In this example (and in 1 and 2 above), our probability space is uniform, i.e., all the
sample points have the same probability (which must be 1

|Ω| , where |Ω| denotes the size of Ω). In such
circumstances, the probability of any event A is clearly just

Pr[A] =
# of sample points in A
# of sample points in Ω

=
|A|
|Ω|

.

So for uniform spaces, computing probabilities reduces to counting sample points! Using this obser-
vation, it is now easy to compute the probabilities of the two events A and B above: Pr[A] = 6

36 = 1
6 ,

and Pr[B] = 11
36 .

6. Card Shuffling. Shuffle a deck of cards. Here Ω consists of the 52! permutations of the deck, each
with equal probability 1

52! . [Note that we’re really talking about an idealized mathematical model of
shuffling here; in real life, there will always be a bit of bias in our shuffling. However, the mathemat-
ical model is close enough to be useful.]

7. Poker Hands. Shuffle a deck of cards, and then deal a poker hand. Here Ω consists of all possible
five-card hands, each with equal probability (because the deck is assumed to be randomly shuffled).
As we saw above, the number of such hands is

(52
5

)
. What is the probability that our poker hand is a

flush? [For those who are not addicted to gambling, a flush is a hand in which all cards have the same
suit, say Hearts.] To compute this probability, we just need to figure out how many poker hands are
flushes. Well, there are 13 cards in each suit, so the number of flushes in each suit is

(13
5

)
. The total

number of flushes is therefore 4 ·
(13

5

)
. So we have

Pr[hand is a flush] =
4 ·
(13

5

)(52
5

) =
4 ·13! ·5! ·47!

5! ·8! ·52!
=

4 ·13 ·12 ·11 ·10 ·9
52 ·51 ·50 ·49 ·48

≈ 0.002.
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8. Balls and Bins. Throw 20 (labeled) balls into 10 (labeled) bins, so that each ball is equally likely
to land in any bin, regardless of what happens to the other balls. (Thus, in the terminology of the
previous Note, we are in the situation of “sampling with replacement” and order does matter.) Here
Ω = {(b1,b2, . . . ,b20) : 1 ≤ bi ≤ 10}; the component bi denotes the bin in which ball i lands. There
are 1020 possible outcomes (why?), each with probability 1

1020 . More generally, if we throw m balls
into n bins, we have a sample space of size nm. [Note that example 2 above is the special case
with m = 3 and n = 2, and example 4 is the special case m = 2, n = 6.] Let A be the event that
bin 1 is empty. Again, we just need to count how many outcomes have this property. And this is
exactly the number of ways all 20 balls can fall into the remaining nine bins, which is 920. Hence
Pr[A] = 920

1020 = ( 9
10)

20 ≈ 0.12. What is the probability that bin 1 contains at least one ball? This is
easy: this event, call it Ā, is the complement of A, i.e., it consists of precisely those sample points that
are not in A. So Pr[Ā] = 1−Pr[A]≈ 0.88. More generally, if we throw m balls into n bins, we have

Pr[bin 1 is empty] =
(

n−1
n

)m

=

(
1− 1

n

)m

.

As we shall see, balls and bins is another probability space that shows up very often in Computer
Science: for example, we can think of it as modeling a load balancing scheme, in which each job is
sent to a random processor.

Birthday Paradox
The “birthday paradox” is a remarkable phenomenon that examines the chances that two people in a group
have the same birthday. It is a “paradox” not because of a logical contradiction, but because it goes against
intuition. For ease of calculation, we take the number of days in a year to be 365. If we consider the case
where there are n people in a room, then |Ω|= 365n. Let A = “At least two people have the same birthday,”
and let Ā = “No two people have the same birthday.” It is clear that Pr[A] = 1−Pr[Ā]. We will calculate
Pr[Ā], since it is easier, and then find out Pr[A]. How many ways are there for no two people to have the same
birthday? Well, there are 365 choices for the first person, 364 for the second, . . . , 365−n+1 choices for the
nth person, for a total of 365×364×·· ·×(365−n+1). (Note that this is just sampling without replacement
with 365 bins and n balls; as we saw in the previous Note, the number of outcomes is 365!

(365−n)! , which is what

we just got.) Thus we have Pr[Ā] = |Ā|
|Ω| =

365×364×···×(365−n+1)
365n . Then Pr[A] = 1− 365×364×···×(365−n+1)

365n .
This allows us to compute Pr[A] as a function of the number of people, n. Of course, as n increases Pr[A]
increases. In fact, with n = 23 people you should be willing to bet that at least two people do have the same
birthday, since then Pr[A] is larger than 50%! For n = 60 people, Pr[A] is over 99%.

The Monty Hall Problem
In an (in)famous 1970s game show hosted by one Monty Hall, a contestant was shown three doors; behind
one of the doors was a prize, and behind the other two were goats. The contestant picks a door (but doesn’t
open it). Then Hall’s assistant (Carol), opens one of the other two doors, revealing a goat (since Carol
knows where the prize is, she can always do this). The contestant is then given the option of sticking with
his current door, or switching to the other unopened one. He wins the prize if and only if his chosen door
is the correct one. The question, of course, is: Does the contestant have a better chance of winning if he
switches doors?

Intuitively, it seems obvious that since there are only two remaining doors after the host opens one, they
must have equal probability. So you may be tempted to jump to the conclusion that it should not matter
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whether or not the contestant stays or switches. We will see that actually, the contestant has a better chance
of picking the car if he or she uses the switching strategy. We will first give an intuitive pictorial argument,
and then take a more rigorous probability approach to the problem.

To see why it is in the contestant’s best interests to switch, consider the following. Initially when the
contestant chooses the door, he or she has a 1

3 chance of picking the car. This must mean that the other
doors combined have a 2

3 chance of winning. But after Carol opens a door with a goat behind it, how do
the probabilities change? Well, the door the contestant originally chose still has a 1

3 chance of winning, and
the door that Carol opened has no chance of winning. What about the last door? It must have a 2

3 chance of
containing the car, and so the contestant has a higher chance of winning if he or she switches doors. This
argument can be summed up nicely in the following picture:

What is the sample space here? Up to the point where the contestant makes his final decision, there are three
random choices made: the game show host’s choice of where to put the car, the contestant’s initial choice of
door, and Carol’s choice of which door to open. We can therefore describe the outcome of the game using a
triple of the form (i, j,k), where i, j ∈ {1,2,3} and k ∈ {Heads, Tails}. The values i, j respectively specify
the location of the prize and the initial door chosen by the contestant. The value k represents the result of a
coin flip by Carol, with the interpretation that if there are two doors Carol can choose from, she picks the
lower-numbered door if the coin flip is Heads and the higher-numbered door if it is Tails. (If Carol has no
choice as to which door to open, then she will just ignore the coin flip and open that door.) Note that the
sample space has exactly 3×3×2 = 18 sample points.

Now the assignment of probabilities. A reasonable probability model is to think of all the outcomes as
equally likely, so that the probability of each of the outcomes is 1/18.

Let’s return to the Monty Hall problem. Recall that we want to investigate the relative merits of the “sticking”
strategy and the “switching” strategy. Let’s suppose the contestant decides to switch doors. The event A we
are interested in is the event that the contestant wins. Which sample points (i, j,k) are in A? Well, since the
contestant is switching doors, the event A does not include any sample points where the contestant’s initial
choice j is equal to the prize door i. And all outcomes where i 6= j correspond to a win for the contestant,
because Carol must open the second non-prize door, leaving the contestant to switch to the prize door. So
A consists of all outcomes (i, j,k) in which i 6= j. How many of these outcomes are there? Well, there
are 6 pairs of (i, j) in which i 6= j, and for each such pair, k can be Heads or Tails. So there are a total of
6×2 = 12 outcomes in A. So Pr[A] = 12

18 = 2
3 . That is, using the switching strategy, the contestant wins with

probability 2
3 ! It should be intuitively clear (and easy to check formally — try it!) that under the sticking

strategy his probability of winning is 1
3 . (In this case, he is really just picking a single random door.) So by

switching, the contestant actually improves his odds by a huge amount!

This is one of many examples that illustrate the importance of doing probability calculations systematically,
rather than “intuitively.” Recall the key steps in all our calculations:

• What is the sample space (i.e., the experiment and its set of possible outcomes)?
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• What is the probability of each outcome (sample point)?

• What is the event we are interested in (i.e., which subset of the sample space)?

• Finally, compute the probability of the event by adding up the probabilities of the sample points inside
it.

Whenever you meet a probability problem, you should always go back to these basics to avoid potential
pitfalls. Even experienced researchers make mistakes when they forget to do this — witness many erro-
neous “proofs”, submitted by mathematicians to newspapers at the time, of their (erroneous) claim that the
switching strategy in the Monty Hall problem does not improve the odds.
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Conditional Probability
A pharmaceutical company is marketing a new test for a certain medical disorder. According to clinical
trials, the test has the following properties:

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10%
(these are called “false negatives”).

2. When applied to a healthy person, the test comes up negative in 80% of cases, and positive in 20%
(these are called “false positives”).

Suppose that the incidence of the disorder in the US population is 5%. When a random person is tested and
the test comes up positive, what is the probability that the person actually has the disorder? (Note that this is
presumably not the same as the simple probability that a random person has the disorder, which is just 1

20 .)
The implicit probability space here is the entire US population with uniform probabilities.

This is an example of a conditional probability: we are interested in the probability that a person has the
disorder (event A) given that he/she tests positive (event B). Let’s write this as Pr[A|B].
How should we define Pr[A|B]? Well, since event B is guaranteed to happen, we should look not at the whole
sample space Ω , but at the smaller sample space consisting only of the sample points in B. What should
the conditional probabilities of these sample points be? If they all simply inherit their probabilities from Ω ,
then the sum of these probabilities will be ∑ω∈B Pr[ω] = Pr[B], which in general is less than 1. So we should
normalize the probability of each sample point by 1

Pr[B] . In other words, for each sample point ω ∈ B, the
new probability becomes

Pr[ω|B] = Pr[ω]

Pr[B]
.

Now it is clear how to define Pr[A|B]: namely, we just sum up these normalized probabilities over all sample
points that lie in both A and B:

Pr[A|B] := ∑
ω∈A∩B

Pr[ω|B] = ∑
ω∈A∩B

Pr[ω]

Pr[B]
=

Pr[A∩B]
Pr[B]

.

Definition 11.1 (conditional probability): For events A,B in the same probability space, such that Pr[B]> 0,
the conditional probability of A given B is

Pr[A|B] :=
Pr[A∩B]

Pr[B]
.

Let’s go back to our medical testing example. The sample space here consists of all people in the US. Let
N denote the number of people in the US (so N ≈ 250 million). The population consists of four disjoint
subsets:
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T P: the true positives (90% of N
20 , i.e., 9N

200 of them);

FP: the false positives (20% of 19N
20 , i.e., 19N

100 of them);

T N: the true negatives (80% of 19N
20 , i.e., 76N

100 of them);

FN: the false negatives (10% of N
20 , i.e., N

200 of them).

We choose a person at random. Recall that A is the event that the person so chosen is affected, and B the
event that he/she tests positive. Note that B is the union of the disjoint sets T P and FP, so

|B|= |T P|+ |FP|= 9N
200 +

19N
100 = 47N

200 .

Thus we have
Pr[A] = 1

20 and Pr[B] = 47
200 .

Now when we condition on the event B, we focus in on the smaller sample space consisting only of those
47N
200 individuals who test positive. To compute Pr[A|B], we need to figure out Pr[A∩B] (the part of A that
lies in B). But A∩B is just the set of people who are both affected and test positive, i.e., A∩B = T P. So we
have

Pr[A∩B] =
|T P|

N
=

9
200

.

Finally, we conclude from the definition of conditional probability that

Pr[A|B] = Pr[A∩B]
Pr[B]

=
9/200

47/200
=

9
47
≈ 0.19.

This seems bad: if a person tests positive, there’s only about a 19% chance that he/she actually has the
disorder! This sounds worse than the original claims made by the pharmaceutical company, but in fact it’s
just another view of the same data.

[Incidentally, note that Pr[B|A] = 9/200
1/20 = 9

10 ; so Pr[A|B] and Pr[B|A] can be very different. Of course, Pr[B|A]
is just the probability that a person tests positive given that he/she has the disorder, which we knew from the
start was 90%.]

To complete the picture, what’s the (unconditional) probability that the test gives a correct result (positive
or negative) when applied to a random person? Call this event C. Then

Pr[C] = |T P|+|T N|
N = 9

200 +
76

100 = 161
200 ≈ 0.8.

So the test is about 80% effective overall, a more impressive statistic.

But how impressive is it? Suppose we ignore the test and just pronounce everybody to be healthy. Then
we would be correct on 95% of the population (the healthy ones), and wrong on the affected 5%. In other
words, this trivial test is 95% effective! So we might ask if it is worth running the test at all. What do you
think?

Here are a couple more examples of conditional probabilities, based on some of our sample spaces from the
previous lecture note.

1. Balls and bins. Suppose we toss m = 3 (labelled) balls into n = 3 bins; this is a uniform sample space
with 33 = 27 points. We already know that the probability the first bin is empty is (1− 1

3)
3 =(2

3)
3 = 8

27 .
What is the probability of this event given that the second bin is empty? Call these events A,B
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respectively. To compute Pr[A|B] we need to figure out Pr[A∩B]. But A∩B is the event that both the
first two bins are empty, i.e., all three balls fall in the third bin. So Pr[A∩B] = 1

27 (why?). Therefore,

Pr[A|B] = Pr[A∩B]
Pr[B]

=
1/27
8/27

=
1
8
.

Not surprisingly, 1
8 is quite a bit less than 8

27 : knowing that bin 2 is empty makes it significantly less
likely that bin 1 will be empty.

2. Dice. Roll two fair dice. Let A be the event that their sum is even, and B the event that the first die is
even. By symmetry it’s easy to see that Pr[A] = 1

2 and Pr[B] = 1
2 . Moreover, a little counting gives us

that Pr[A∩B] = 1
4 . What is Pr[A|B]? Well,

Pr[A|B] = Pr[A∩B]
Pr[B]

=
1/4
1/2

=
1
2
.

In this case, Pr[A|B] = Pr[A], i.e., conditioning on B does not change the probability of A.

Bayesian Inference
The medical test problem is a canonical example of an inference problem: given a noisy observation (the
result of the test), we want to figure out the likelihood of something not directly observable (whether a person
is healthy). To bring out the common structure of such inference problems, let us redo the calculations in
the medical test example but only in terms of events without explicitly mentioning the sample points of the
underlying sample space.

Recall: A is the event the person is affected, B is the event that the test is positive. What are we given?

• Pr[A] = 0.05, (5% of the U.S. population is affected)

• Pr[B|A] = 0.9 (90% of the affected people test positive)

• Pr[B|A] = 0.2 (20% of healthy people test positive)

We want to calculate Pr[A|B]. We can proceed as follows:

Pr[A|B] = Pr[A∩B]
Pr[B]

=
Pr[B|A]Pr[A]

Pr[B]
(1)

and

Pr[B] = Pr[A∩B]+Pr[A∩B] = Pr[B|A]Pr[A]+Pr[B|A](1−Pr[A]) (2)

Combining equations (1) and (2), we have expressed Pr[A|B] in terms of Pr[A],Pr[B|A] and Pr[B|A]:

Pr[A|B] = Pr[B|A]Pr[A]
Pr[B|A]Pr[A]+Pr[B|A](1−Pr[A])

(3)

This equation is useful for many inference problems. We are given Pr[A], which is the (unconditional)
probability that the event of interest A happens. We are given Pr[B|A] and Pr[B|A], which quantify how noisy
the observation is. (If Pr[B|A] = 1 and Pr[B|A] = 0, for example, the observation is completely noiseless.)
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Now we want to calculate Pr[A|B], the probability that the event of interest happens given we made the
observation. Equation (3) allows us to do just that.

Equation (3) is at the heart of a subject called Bayesian inference, used extensively in fields such as ma-
chine learning, communications and signal processing. The equation can be interpreted as a way to update
knowledge after making an observation. In this interpretation, Pr[A] can be thought of as a prior probability:
our assessment of the likelihood of an event of interest A before making an observation. It reflects our prior
knowledge. Pr[A|B] can be interpreted as the posterior probability of A after the observation. It reflects our
new knowledge.

Of course, equations (1), (2) and (3) are derived from the basic axioms of probability and the definition of
conditional probability, and are therefore true with or without the above Bayesian inference interpretation.
However, this interpretation is very useful when we apply probability theory to study inference problems.

Bayes’ Rule and Total Probability Rule
Equations (1) and (2) are very useful in their own right. The first is called Bayes’ Rule and the second is
called the Total Probability Rule. Bayes’ Rule is useful when one wants to calculate Pr[A|B] but one is
given Pr[B|A] instead, i.e. it allows us to “flip” things around. The Total Probability Rule is an application of
the strategy of “dividing into cases” we learned in Note 2 to calculating probabilities. We want to calculate
the probability of an event B. There are two possibilities: either an event A happens or A does not happen. If
A happens the probability that B happens is Pr[B|A]. If A does not happen, the probability that B happens is
Pr[B|A]. If we know or can easily calculate these two probabilities and also Pr[A], then the total probability
rule yields the probability of event B.

Independent events
Definition 11.2 (independence): Two events A,B in the same probability space are independent if Pr[A∩
B] = Pr[A]×Pr[B].

The intuition behind this definition is the following. Suppose that Pr[B]> 0 and A,B are independent. Then
we have

Pr[A|B] = Pr[A∩B]
Pr[B]

=
Pr[A]×Pr[B]

Pr[B]
= Pr[A].

Thus independence has the natural meaning that “the probability of A is not affected by whether or not B
occurs.” (By a symmetrical argument, we also have Pr[B|A] = Pr[B] provided Pr[A] > 0.) For events A,B
such that Pr[B]> 0, the condition Pr[A|B] = Pr[A] is actually equivalent to the definition of independence.

Examples: In the balls and bins example above, events A,B are not independent. In the dice example, events
A,B are independent.

The above definition generalizes to any finite set of events:

Definition 11.3 (mutual independence): Events A1, . . . ,An are mutually independent if for every subset
I ⊆ {1, . . . ,n},

Pr[
⋂

i∈I Ai] = ∏i∈I Pr[Ai].

Note that we need this property to hold for every subset I.

For mutually independent events A1, . . . ,An, it is not hard to check from the definition of conditional proba-
bility that, for any 1≤ i≤ n and any subset I ⊆ {1, . . . ,n}\{i}, we have

Pr[Ai|
⋂

j∈I A j] = Pr[Ai].
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Note that the independence of every pair of events (so-called pairwise independence) does not necessarily
imply mutual independence. For example, it is possible to construct three events A,B,C such that each pair
is independent but the triple A,B,C is not mutually independent.

Combinations of events
In most applications of probability in Computer Science, we are interested in things like Pr[

⋃n
i=1 Ai] and

Pr[
⋂n

i=1 Ai], where the Ai are simple events (i.e., we know, or can easily compute, the Pr[Ai]). The intersection⋂
i Ai corresponds to the logical AND of the events Ai, while the union

⋃
i Ai corresponds to their logical OR.

As an example, if Ai denotes the event that a failure of type i happens in a certain system, then
⋃

i Ai is the
event that the system fails.

In general, computing the probabilities of such combinations can be very difficult. In this section, we discuss
some situations where it can be done.

Intersections of events
From the definition of conditional probability, we immediately have the following product rule (sometimes
also called the chain rule) for computing the probability of an intersection of events.

Theorem 11.1: [Product Rule] For any events A,B, we have

Pr[A∩B] = Pr[A]Pr[B|A].

More generally, for any events A1, . . . ,An,

Pr[
⋂n

i=1 Ai] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]×·· ·×Pr[An|
⋂n−1

i=1 Ai].

Proof: The first assertion follows directly from the definition of Pr[B|A] (and is in fact a special case of the
second assertion with n = 2).

To prove the second assertion, we will use induction on n (the number of events). The base case is n = 1,
and corresponds to the statement that Pr[A] = Pr[A], which is trivially true. For the inductive step, let n > 1
and assume (the inductive hypothesis) that

Pr[
⋂n−1

i=1 Ai] = Pr[A1]×Pr[A2|A1]×·· ·×Pr[An−1|
⋂n−2

i=1 Ai].

Now we can apply the definition of conditional probability to the two events An and
⋂n−1

i=1 Ai to deduce that

Pr[
⋂n

i=1 Ai] = Pr[An∩ (
⋂n−1

i=1 Ai)]

= Pr[An|
⋂n−1

i=1 Ai]×Pr[
⋂n−1

i=1 Ai]

= Pr[An|
⋂n−1

i=1 Ai]×Pr[A1]×Pr[A2|A1]×·· ·×Pr[An−1|
⋂n−2

i=1 Ai],

where in the last line we have used the inductive hypothesis. This completes the proof by induction. 2

The product rule is particularly useful when we can view our sample space as a sequence of choices. The
next few examples illustrate this point.

1. Coin tosses. Toss a fair coin three times. Let A be the event that all three tosses are heads. Then
A = A1∩A2∩A3, where Ai is the event that the ith toss comes up heads. We have

Pr[A] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]

= Pr[A1]×Pr[A2]×Pr[A3]

= 1
2 ×

1
2 ×

1
2 = 1

8 .
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The second line here follows from the fact that the tosses are mutually independent. Of course, we
already know that Pr[A] = 1

8 from our definition of the probability space in the previous lecture note.
The above is really a check that the space behaves as we expect.1

It seems reasonable that the tosses should remain mutually independent, even if the coin is biased,
since no coin toss is affected by any of the other tosses. If the coin is biased with heads probability p,
this independence assumption implies

Pr[A] = Pr[A1]×Pr[A2]×Pr[A3] = p3.

As another example, let B denote the event that the first coin toss comes up tails and the next two coin
tosses come up heads. Then B = A1∩A2∩A3, and these events are independent, so

Pr[B] = Pr[A1]×Pr[A2]×Pr[A3] = p2(1− p),

since Pr[A1] = 1−Pr[A1] = 1− p. More generally, the probability of any sequence of n tosses con-
taining r heads and n− r tails is pr(1− p)n−r. The notion of independence is the key concept that
enables us to assign probabilities to these outcomes.

2. Balls and bins. Let A be the event that bin 1 is empty. We saw in the previous lecture note (by
counting) that Pr[A] = (1− 1

n)
m, where m is the number of balls and n is the number of bins. The

product rule gives us a different way to compute the same probability. We can write A =
⋂m

i=1 Ai,
where Ai is the event that ball i misses bin 1. Clearly Pr[Ai] = 1− 1

n for each i. Also, the Ai are
mutually independent since ball i chooses its bin regardless of the choices made by any of the other
balls. So

Pr[A] = Pr[A1]×·· ·×Pr[Am] =

(
1− 1

n

)m

.

3. Card shuffling. We can look at the sample space as a sequence of choices as follows. First the top
card is chosen uniformly from all 52 cards, i.e., each card with probability 1

52 . Then (conditional on the
first card), the second card is chosen uniformly from the remaining 51 cards, each with probability 1

51 .
Then (conditional on the first two cards), the third card is chosen uniformly from the remaining 50,
and so on. The probability of any given permutation, by the product rule, is therefore

1
52
× 1

51
× 1

50
×·· ·× 1

2
× 1

1
=

1
52!

.

Reassuringly, this is in agreement with our definition of the probability space in the previous lecture
note, based on counting permutations.

4. Poker hands. Again we can view the sample space as a sequence of choices. First we choose one of
the cards (note that it is not the “first” card, since the cards in our hand have no ordering) uniformly
from all 52 cards. Then we choose another card from the remaining 51, and so on. For any given
poker hand, the probability of choosing it is (by the product rule):

5
52
× 4

51
× 3

50
× 2

49
× 1

48
=

1(52
5

) ,
just as before. Where do the numerators 5, 4, 3, 2, 1 come from? Well, for the given hand the first
card we choose can be any of the five in the hand: i.e., five choices out of 52. The second can be any

1Strictly speaking, we should really also have checked from our original definition of the probability space that Pr[A1], Pr[A2|A1]
and Pr[A3|A1∩A2] are all equal to 1

2 .
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of the remaining four in the hand: four choices out of 51. And so on. This arises because the order of
the cards in the hand is irrelevant.

Let’s use this view to compute the probability of a flush in a different way. Clearly this is 4×Pr[A],
where A is the probability of a Hearts flush. And we can write A =

⋂5
i=1 Ai, where Ai is the event that

the ith card we pick is a Heart. So we have

Pr[A] = Pr[A1]×Pr[A2|A1]×·· ·×Pr[A5|
⋂4

i=1 Ai].

Clearly Pr[A1] =
13
52 = 1

4 . What about Pr[A2|A1]? Well, since we are conditioning on A1 (the first card
is a Heart), there are only 51 remaining possibilities for the second card, 12 of which are Hearts. So
Pr[A2|A1] =

12
51 . Similarly, Pr[A3|A1∩A2] =

11
50 , and so on. So we get

4×Pr[A] = 4× 13
52
× 12

51
× 11

50
× 10

49
× 9

48
,

which is exactly the same fraction we computed in the previous lecture note.

So now we have two methods of computing probabilities in many of our sample spaces. It is useful to
keep these different methods around, both as a check on your answers and because in some cases one
of the methods is easier to use than the other.

Unions of events
You are in Las Vegas, and you spy a new game with the following rules. You pick a number between 1
and 6. Then three dice are thrown. You win if and only if your number comes up on at least one of the dice.

The casino claims that your odds of winning are 50%, using the following argument. Let A be the event that
you win. We can write A = A1∪A2∪A3, where Ai is the event that your number comes up on die i. Clearly
Pr[Ai] =

1
6 for each i. Therefore,

Pr[A] = Pr[A1∪A2∪A3] = Pr[A1]+Pr[A2]+Pr[A3] = 3× 1
6
=

1
2
.

Is this calculation correct? Well, suppose instead that the casino rolled six dice, and again you win if and
only if your number comes up at least once. Then the analogous calculation would say that you win with
probability 6× 1

6 = 1, i.e., certainly! The situation becomes even more ridiculous when the number of dice
gets bigger than 6.

The problem is that the events Ai are not disjoint: there are some sample points that lie in more than one of
the Ai. (We could get really lucky and our number could come up on two of the dice, or all three.) So if we
add up the Pr[Ai] we are counting some sample points more than once.

Fortunately, there is a formula for this, known as the Principle of Inclusion/Exclusion:

Theorem 11.2: [Inclusion/Exclusion] For events A1, . . . ,An in some probability space, we have

Pr[
⋃n

i=1 Ai] =
n

∑
i=1

Pr[Ai]− ∑
{i, j}

Pr[Ai∩A j]+ ∑
{i, j,k}

Pr[Ai∩A j ∩Ak]−·· ·±Pr[
⋂n

i=1 Ai].

[In the above summations, {i, j} denotes all unordered pairs with i 6= j, {i, j,k} denotes all unordered triples
of distinct elements, and so on.]

In other words, to compute Pr[
⋃

i Ai], we start by summing the event probabilities Pr[Ai], then we subtract the
probabilities of all pairwise intersections, then we add back in the probabilities of all three-way intersections,
and so on.
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We won’t prove this formula here; but you might like to verify it for the special case n = 3 by drawing a
Venn diagram and checking that every sample point in A1∪A2∪A3 is counted exactly once by the formula.
You might also like to prove the formula for general n by induction (in similar fashion to the proof of the
Product Rule above).

Taking the formula on faith, what is the probability we get lucky in the new game in Vegas?

Pr[A1∪A2∪A3] = Pr[A1]+Pr[A2]+Pr[A3]−Pr[A1∩A2]−Pr[A1∩A3]−Pr[A2∩A3]+Pr[A1∩A2∩A3].

Now the nice thing here is that the events Ai are mutually independent (the outcome of any die does not
depend on that of the others), so Pr[Ai ∩A j] = Pr[Ai]Pr[A j] = (1

6)
2 = 1

36 , and similarly Pr[A1 ∩A2 ∩A3] =
(1

6)
3 = 1

216 . So we get

Pr[A1∪A2∪A3] =
(
3× 1

6

)
−
(
3× 1

36

)
+ 1

216 = 91
216 ≈ 0.42.

So your odds are quite a bit worse than the casino is claiming!

[Actually, for this example there is an easier way to compute this probability, by looking at the complement
event. Let W denote the event that you win, and W the complement event, i.e., W is the event that you lose.
Then

Pr[W ] = 1−Pr[W ] = 1−Pr[A1∩A2∩A3] = 1−Pr[A1]×Pr[A2]×Pr[A3] = 1− 5
6 ×

5
6 ×

5
6 = 91

216 .

But this complement trick does not always work, and then it is useful to know about the inclusion/exclusion
formula.]

When n is large (i.e., we are interested in the union of many events), the Inclusion/Exclusion formula is
essentially useless because it involves computing the probability of the intersection of every non-empty
subset of the events, and there are 2n− 1 of these! Sometimes we can just look at the first few terms of it
and forget the rest: note that successive terms actually give us an overestimate and then an underestimate of
the answer, and these estimates both get better as we go along.

However, in many situations we can get a long way by just looking at the first term:

1. Disjoint events. If the events Ai are all disjoint (i.e., no pair of them contain a common sample point
— such events are also called mutually exclusive), then

Pr[
⋃n

i=1 Ai] =
n

∑
i=1

Pr[Ai].

[Note that we have already used this fact several times in our examples, e.g., in claiming that the
probability of a flush is four times the probability of a Hearts flush — clearly flushes in different suits
are disjoint events.]

2. Union bound. Always, it is the case that

Pr[
⋃n

i=1 Ai]≤
n

∑
i=1

Pr[Ai].

This merely says that adding up the Pr[Ai] can only overestimate the probability of the union. Crude
as it may seem, in the next lecture note we’ll see how to use the union bound effectively in a Computer
Science example.
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 12

A Killer Application
In this lecture, we will see a “killer app” of elementary probability in Computer Science. Suppose a hash
function distributes keys evenly over a table of size n. How many (randomly chosen) keys can we hash
before the probability of a collision exceeds (say) 1

2 ? As we shall see, this question can be tackled by an
analysis of the balls-and-bins probability space which we have already encountered.

Application: Hash functions
As you may already know, a hash table is a data structure that supports the storage of sets of keys from
a (large) universe U (say, the names of all 250 million people in the US). The operations supported are
ADDing a key to the set, DELETEing a key from the set, and testing MEMBERship of a key in the set. The
hash function h maps U to a table T of modest size. To ADD a key x to our set, we evaluate h(x) (i.e.,
apply the hash function to the key) and store x at the location h(x) in the table T . All keys in our set
that are mapped to the same table location are stored in a simple linked list. The operations DELETE and
MEMBER are implemented in similar fashion, by evaluating h(x) and searching the linked list at h(x). Note
that the efficiency of a hash function depends on having only few collisions—i.e., keys that map to the same
location. This is because the search time for DELETE and MEMBER operations is proportional to the length
of the corresponding linked list.

The question we are interested in here is the following: suppose our hash table T has size n, and that our
hash function h distributes U evenly over T .1 Assume that the keys we want to store are chosen uniformly at
random and independently from the universe U . What is the largest number, m, of keys we can store before
the probability of a collision reaches 1

2 ?

Let’s begin by seeing how this problem can be put into the balls and bins framework. The balls will be
the m keys to be stored, and the bins will be the n locations in the hash table T . Since the keys are chosen
uniformly and independently from U , and since the hash function distributes keys evenly over the table, we
can see each key (ball) as choosing a hash table location (bin) uniformly and independently from T . Thus
the probability space corresponding to this hashing experiment is exactly the same as the balls and bins
space.

We are interested in the event A that there is no collision, or equivalently, that all m balls land in different
bins. Clearly Pr[A] will decrease as m increases (with n fixed). Our goal is to find the largest value of m such
that Pr[A] remains above 1

2 .

Let’s fix the value of m and try to compute Pr[A]. Since our probability space is uniform (each outcome has
probability 1

nm ), it’s enough just to count the number of outcomes in A. In how many ways can we arrange m
balls in n bins so that no bin contains more than one ball? Well, there are n places to put the first ball, then
n− 1 remaining places for the second ball (since it cannot go in the same bin as the first), n− 2 places for

1In other words, |U |= αn (the size of U is an integer multiple α of the size of T ), and for each y ∈ T , the number of keys x ∈U
for which h(x) = y is exactly α .
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the third ball, and so on. Thus the total number of such arrangements is

n× (n−1)× (n−2)×·· ·× (n−m+2)× (n−m+1).

This formula is valid as long as m≤ n: if m > n then clearly the answer is zero. From now on, we’ll assume
that m≤ n.

Now we can calculate the probability of no collision:

Pr[A] =
n(n−1)(n−2) . . .(n−m+1)

nm

=
n
n
× n−1

n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
. (1)

Before going on, let’s pause to observe that we could compute Pr[A] in a different way, as follows. View the
probability space as a sequence of choices, one for each ball. For 1 ≤ i ≤ m, let Ai be the event that the ith
ball lands in a different bin from balls 1,2, . . . , i−1. Then

Pr[A] = Pr[
⋂n

i=1 Ai] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]×·· ·×Pr[Am|
⋂m−1

i=1 Ai]

= 1× n−1
n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
.

Fortunately, we get the same answer as before! [You should make sure you see how we obtained the
conditional probabilities in the second line above. For example, Pr[A3|A1 ∩A2] is the probability that the
third ball lands in a different bin from the first two balls, given that those two balls also landed in different
bins. This means that the third ball has n−2 possible bin choices out of a total of n.]

Essentially, we are now done with our problem: equation (1) gives an exact formula for the probability of
no collision when m keys are hashed. All we need to do now is plug values m = 1,2,3, . . . into (1) until we
find that Pr[A] drops below 1

2 . The corresponding value of m (minus 1) is what we want.

But this is not really satisfactory: it would be much more useful to have a formula that gives the “critical”
value of m directly, rather than having to compute Pr[A] for m = 1,2,3, . . .. Note that we would have to do
this computation separately for each different value of n we are interested in: i.e., whenever we change the
size of our hash table.

So what remains is to “turn equation (1) around”, so that it tells us the value of m at which Pr[A] drops
below 1

2 . To do this, let’s take logs: this is a good thing to do because it turns the product into a sum, which
is easier to handle. We get

ln(Pr[A]) = ln
(

1− 1
n

)
+ ln

(
1− 2

n

)
+ · · ·+ ln

(
1− m−1

n

)
, (2)

where “ln” denotes natural (base e) logarithm. Now we can make use of a standard approximation for
logarithms: namely, if x is small then ln(1− x)≈−x. This comes from the Taylor series expansion

ln(1− x) =−x− x2

2
− x3

3
−·· · .

So by replacing ln(1− x) by −x we are making an error of at most x2

2 + x3

3 + · · · , which is at most 2x2 when
x≤ 1

2 . In other words, we have
−x−2x2 ≤ ln(1− x)≤−x.
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And if x is small then the error term 2x2 will be much smaller than the main term −x. Rather than carry
around the error term 2x2 everywhere, in what follows we’ll just write ln(1− x)≈−x, secure in the knowl-
edge that we could make this approximation precise if necessary.

Now let’s plug this approximation into equation (2):

ln(Pr[A])≈−1
n
− 2

n
− 3

n
−·· ·− m−1

n

=−1
n

m−1

∑
i=1

i

=−m(m−1)
2n

≈−m2

2n
. (3)

Note that we’ve used the approximation for ln(1−x) with x = 1
n ,

2
n ,

3
n , . . . ,

m−1
n . So our approximation should

be good provided all these are small, i.e., provided n is fairly big and m is quite a bit smaller than n. Once
we’re done, we’ll see that the approximation is actually pretty good even for modest sizes of n.

Now we can undo the logs in (3) to get our expression for Pr[A]:

Pr[A]≈ e−
m2
2n .

The final step is to figure out for what value of m this probability becomes 1
2 . So we want the largest m such

that e−
m2
2n ≥ 1

2 . This means we must have

−m2

2n
≥ ln(1

2) =− ln2, (4)

or equivalently
m≤

√
(2ln2)n≈ 1.177

√
n.

So the bottom line is that we can hash approximately m = b1.177
√

nc keys before the probability of a

collision reaches 1
2 .

Recall that our calculation was only approximate; so we should go back and get a feel for how much error
we made. We can do this by using equation (1) to compute the exact value m = m0 at which Pr[A] drops
below 1

2 , for a few sample values of n. Then we can compare these values with our estimate m = 1.177
√

n.

n 10 20 50 100 200 365 500 1000 104 105 106

1.177
√

n 3.7 5.3 8.3 11.8 16.6 22.5 26.3 37.2 118 372 1177
exact m0 4 5 8 12 16 22 26 37 118 372 1177

From the table, we see that our approximation is very good even for small values of n. When n is large, the
error in the approximation becomes negligible.

Why 1
2 ?

Our hashing question asked when the probability of a collision rises to 1
2 . Is there anything special about 1

2 ?
Not at all. What we did was to (approximately) compute Pr[A] (the probability of no collision) as a function
of m, and then find the largest value of m for which our estimate is smaller than 1

2 . If instead we were
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interested in keeping the collision probability below (say) 0.05 (= 5%), we would just replace 1
2 by 0.95 in

equation (4). If you work through the last piece of algebra again, you’ll see that this gives us the critical
value m =

√
(2ln(20/19))n ≈ 0.32

√
n, which of course is a bit smaller than before because our desired

collision probability is now smaller. But no matter what desired probability we specify, the critical value
of m will always be c

√
n for some constant c (which depends on the desired probability).

The birthday paradox revisited

Recall from a previous lecture the birthday “paradox”: what is the probability that, in a group of m people,
no two people have the same birthday? The problem we have solved above is essentially just a generalization
of the birthday problem: the bins are the birthdays and the balls are the people, and we want the probability
that there is no collision. The above table at n = 365 tells us for what value of m this probability drops
below 1

2 : namely, 23.

The coupon collector’s problem
Suppose that when we buy a box of cereal, as a marketing ploy, the cereal manufacturer has included a
random baseball card. Suppose that there are n baseball players who appear on some card, and each cereal
box contains a card chosen uniformly and independently at random from these n possibilities.

Assume that Joe DiMaggio is one of the n baseball players, and I am a huge fan of him: I really want his
baseball card. How many boxes of cereal will I have to buy, to have at least a 50% chance of obtaining a Joe
DiMaggio card? This problem can be analyzed as follows. Suppose we buy m boxes of cereal. Let EJD be
the event that I do not receive a Joe DiMaggio card in any of the m boxes. The card in each of the m boxes is
independent, and for each box the chances that I don’t receive Joe DiMaggio’s card from that box is 1− 1

n .
Therefore,

Pr[EJD] =

(
1− 1

n

)m

.

Note that the Taylor’s series for e−x is

e−x = 1− x+
x2

2!
− x3

3!
+ · · · ,

so 1−x≤ e−x (if x≤ 1), and 1−x≈ e−x is a good approximation if x is small. Plugging in this approximation
above, we find

Pr[EJD]≈
(

e−1/n
)m

= e−m/n .

(In fact, this is an upper bound: Pr[EJD]≤ e−m/n.) So if we want this probability to be about 1/2, we set

e−m/n = 1
2

and solve for m, obtaining
m = n ln2≈ 0.69n.

In other words, if we buy m = 0.69n cereal boxes, we expect to have about a 1
2 probability of finding a Joe

DiMaggio card. (In fact, we are guaranteed at least a 1
2 probability, possibly higher.)

Next suppose that what I really want is a complete collection: I want at least one of each of the n cards. How
many boxes of cereal will I have to buy, to have at least a 50% chance of obtaining a complete collection?
We will analyze this as follows. Let E denote the event that I do not receive a complete collection, after
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buying m boxes of cereal. Let Ei denote the event that I don’t receive any card containing the ith baseball
player, after buying those m boxes of cereal. Note that

E = E1∪E2∪·· ·∪En.

Moreover, our calculation above shows that

Pr[Ei]≤ e−m/n .

Let’s make this = 1
2n , for reasons to be explained in a moment. Setting e−m/n = 1

2n and solving for m, we
obtain m = n ln(2n). In other words, if we buy m = n ln(2n) cereal boxes, then the probability of missing
player i is at most 1

2n , i.e., Pr[Ei]≤ 1
2n for all i = 1,2, . . . ,n. Now we can apply a “Union Bound”, to calculate

an upper bound on Pr[E]:

Pr[E] = Pr[E1∪E2∪·· ·∪En]

≤ Pr[E1]+Pr[E2]+ · · ·+Pr[En] (by the Union Bound)

≤ 1
2n

+
1
2n

+ · · ·+ 1
2n

(by above)

≤ 1
2
.

In other words, if we buy m = n ln(2n) cereal boxes, then we have at least a 1
2 probability of obtaining a

complete collection of all n baseball players. Interestingly, we need considerably more than n cereal boxes
to assemble a complete collection: a good incentive to buy lots of cereal, and a great marketing ploy for
cereal manufacturers.

This has some applications in analysis of network protocols. For instance, here is a simplified description
of the BitTorrent peer-to-peer file-sharing protocol. When someone uploads a file to BitTorrent, it breaks up
the file into many chunks, randomly selects many peers in the network, and sends each peer one chunk of
the file. When another BitTorrent client wants to download the file, it queries its peers to find all peers that
have a copy of some chunk from the file, and repeatedly asks a random such peer to return its chunk, until
the client has all of the chunks of the file. Thus, in each iteration the client obtains another random chunk
of the file. If the file consists of n chunks, and in each iteration the client obtains a random chunk, then we
can expect that downloaders will have to wait a long time to obtain the whole file: they’ll have to perform
about n ln(2n) iterations before they have a decent chance of collecting all the chunks. This is inefficient, so
in practice BitTorrent is forced to go out of its way to include special mechanisms to speed up downloading:
BitTorrent clients download chunks randomly until they have a large fraction of the file, then they switch to
searching for the specific chunks they are missing. [There are other solutions. You might enjoy pondering
how to use error-correcting codes to avoid this inefficiency.]

Perhaps the most interesting aspect of the coupon collector’s problem above is that it illustrates the use of
the union bound to upper-bound the probability that something bad happens. In this case, the bad event is
that we fail to obtain a complete collection of baseball cards, but in general, this methodology is a powerful
way to prove that some bad event is not too likely to happen.
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 13

Random Variables: Distribution and Expectation
Random Variables
Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.
How many students receive their own homework?

To answer this question, we first need to specify the probability space: plainly, it should consist of all 20!
permutations of the homeworks, each with probability 1

20! . [Note that this is the same as the probability
space for card shuffling, except that the number of items being shuffled is now 20 rather than 52.] It helps
to have a picture of a permutation. Think of 20 books lined up on a shelf, labeled from left to right with
1,2, . . . ,20. A permutation π is just a reordering of the books, which we can describe just by listing their
labels from left to right. Let’s denote by πi the label of the book that is in position i. We are interested in the
number of books that are still in their original position, i.e., in the number of i’s such that πi = i. These are
often known as fixed points of the permutation.

Of course, our question does not have a simple numerical answer (such as 6), because the number depends on
the particular permutation we choose (i.e., on the sample point). Let’s call the number of fixed points X . To
make life simpler, let’s also shrink the class size down to 3 for a while. The following table gives a complete
listing of the sample space (of size 3! = 6), together with the corresponding value of X for each sample
point. [We use our bookshelf convention for writing a permutation: thus, for example, the permutation 312
means that book 3 is on the left, book 1 in the center, and book 2 on the right. You should check you agree
with this table.]

permutation π value of X
123 3
132 1
213 1
231 0
312 0
321 1

Thus we see that X takes on values 0, 1 or 3, depending on the sample point. A quantity like this, which
takes on some numerical value at each sample point, is called a random variable (or r.v.) on the sample
space.

Definition 13.1 (random variable): A random variable X on a sample space Ω is a function that assigns
to each sample point ω ∈Ω a real number X(ω).

Until further notice, we’ll restrict out attention to random variables that are discrete, i.e., they take values in
a range that is finite or countably infinite.

The r.v. X in our permutation example above is completely specified by its values at all sample points, as
given in the above table. (Thus, for example, X(123) = 3 etc.)
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Figure 1: Visualization of how a random variable is defined on the sample space.

A random variable can be visualized in general by the picture in Figure 11. Note that the term “random
variable” is really something of a misnomer: it is a function so there is nothing random about it and it is
definitely not a variable! What is random is which sample point of the experiment is realized and hence the
value that the random variable maps the sample point to.

Distribution
When we introduced the basic probability space in Note 10, we defined two things: 1) the sample space Ω

consisting of all the possible outcomes (sample points) of the experiment; 2) the probability of each of the
sample points. Analogously, there are two things important about any random variable: 1) the set of values
that it can take ; 2) the probabilities with which it takes on the values. Since a random variable is defined on
a probability space, we can calculate these probabilities given the probabilities of the sample points. Let a
be any number in the range of a random variable X . Then the set

{ω ∈Ω : X(ω) = a}

is an event in the sample space (do you see why?). We usually abbreviate this event to simply “X = a”.
Since X = a is an event, we can talk about its probability, Pr[X = a]. The collection of these probabilities,
for all possible values of a, is known as the distribution of the r.v. X .

Definition 13.2 (distribution): The distribution of a discrete random variable X is the collection of values
{(a,Pr[X = a]) : a ∈A }, where A is the set of all possible values taken by X .

Thus the distribution of the random variable X in our permutation example above is

Pr[X = 0] =
1
3

; Pr[X = 1] =
1
2

; Pr[X = 3] =
1
6

;

and Pr[X = a] = 0 for all other values of a.

1This and other figures in this note are inspired by figures in Chapter 2 of “Introduction to Probability” by D. Bertsekas and J.
Tsitsiklis.
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Figure 2: Visualization of how the distribution of a random variable is defined.

The distribution of a random variable can be visualized as a bar diagram, shown in Figure 2. The x-axis
represents the values that the random variable can take on. The height of the bar at a value a is the probability
Pr[X = a]. Each of these probabilities can be computed by looking at the probability of the corresponding
event in the sample space.

Note that the collection of events X = a, a ∈A , satisfy two important properties:

• any two events X = a1 and X = a2 with a1 6= a2 are disjoint.

• the union of all these events is equal to the entire sample space Ω.

The collection of events thus form a partition of the sample space (see Figure 2). Both properties follow
directly from the fact that X is a function defined on Ω, i.e. X assigns a unique value to each and every
possible sample point in Ω. As a consequence, the sum of the probabilities Pr[X = a] over all possible
values of a is exactly 1. So when we sum up the probabilities of the events X = a, we are really summing
up the probabilities of all the sample points.

Example: The binomial distribution: This is one of the most important distributions in probability. It can
be defined in terms of a coin-tossing experiment. Consider n independent tosses of a biased coin with Heads
probability p. Each sample point is a sequence of tosses. For example, when n = 3, the sample space Ω is
{HHH,HHT,HT H,HT T,T HH,T HT,T T H,T T T}.
Let X be the number of Heads. Note that this is a function on the sample space: for each sample point ω ,
X(ω) is the number of Heads in ω . For example, X(T HH) = 2 To compute the distribution of X , we first
enumerate the possible values X can take on. They are simply 0,1, . . . ,n. Then we compute the probability
of each event X = i for i = 0, . . . ,n. The probability of the event X = i is the sum of the probabilities of all
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Figure 3: The binomial distributions for two choices of (n, p).

the sample points with i Heads. Any such sample point has a probability pi(1− p)n−i. There are exactly
(n

i

)
of these sample points. So

Pr[X = i] =
(

n
i

)
pi(1− p)n−i i = 0,1, . . .n (1)

This is the binomial distribution with parameters n and p. A random variable with this distribution is called
a binomial random variable (for brevity, we will say X ∼ Bin(n, p)). An example of a binomial distribution
is shown in Figure 3.

Although we define the binomial distribution in terms of an experiment involving tossing coins, this distri-
bution is useful for modeling many real-world problems. Consider for example the error correction problem
studied in Note 8. Recall that we wanted to encode n packets into n+ k packets such that the recipient
can reconstruct the original n packets from any n packets received. But in practice, the number of packet
losses is random, so how do we choose k, the amount of redundancy? If we model each packet getting lost
with probability p and the losses are independent, then if we transmit n+ k packets, the number of packets
received is a random variable X and X ∼ Bin(n+k,1− p). (We are tossing a coin n+k times, and each coin
turns out to be a Head (packet received ) with probability 1− p). So the probability of successfully decoding
the original data is:

Pr[X ≥ n] =
n+k

∑
i=n

(
n+ k

i

)
(1− p)i pn+k−i.

We can choose k such that this probability is no less than, say, 0.95.

Expectation
The distribution of a r.v. contains all the probabilistic information about the r.v. In most applications, how-
ever, the complete distribution of a r.v. is very hard to calculate: for example, suppose we go back to our
original question with 20 students. In principle, we’d have to enumerate 20! ≈ 2.4× 1018 sample points,
compute the value of X at each one, and count the number of points at which X takes on each of its possible
values! (In practice we could streamline this calculation quite a bit, but it is still tedious.) Moreover, even
when we can compute the complete distribution of a r.v., it’s not always very informative.

For these reasons, we seek to compress the distribution into a more compact, convenient form that is also
easier to compute. The most widely used such form is the expectation (or mean) of the r.v.
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Definition 13.3 (expectation): The expectation of a discrete random variable X is defined as

E(X) = ∑
a∈A

a×Pr[X = a],

where the sum is over all possible values taken by the r.v.

For our running permutation example, the expectation is

E(X) =

(
0× 1

3

)
+

(
1× 1

2

)
+

(
3× 1

6

)
= 0+

1
2
+

1
2
= 1.

In other words, the expected number of fixed points in a permutation of three items is exactly 1.

The expectation can be seen in some sense as a “typical” value or the center of mass of the r.v. (though note
that it may not actually be a value that the r.v. ever takes on). It serves as a “balance” for the distribution of
a random variable.

The question of how typical the expectation is for a given r.v. is a very important one that we shall return to
in a later lecture.

Here are some simple examples of expectations.

1. Single die. Throw one fair die. Let X be the number that comes up. Then X takes on values 1,2, . . . ,6
each with probability 1

6 , so

E(X) =
1
6
(1+2+3+4+5+6) =

21
6

=
7
2
.

Note that X never actually takes on its expected value 7
2 .

2. Two dice. Throw two fair dice. Let X be the sum of their scores. Then the distribution of X is

a 2 3 4 5 6 7 8 9 10 11 12
Pr[X = a] 1

36
1

18
1

12
1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

The expectation is therefore

E(X) =

(
2× 1

36

)
+

(
3× 1

18

)
+

(
4× 1

12

)
+ · · ·+

(
12× 1

36

)
= 7.

3. Roulette. A roulette wheel is spun. You bet $1 on Black. If a black number comes up, you receive
your stake plus $1; otherwise you lose your stake. Let X be your net winnings in one game. Then X
can take on the values +1 and−1, and Pr[X = 1] = 18

38 , Pr[X =−1] = 20
38 . [Recall that a roulette wheel

has 38 slots: the numbers 1,2, . . . ,36, half of which are red and half black, plus 0 and 00, which are
green.] Thus

E(X) =

(
1× 18

38

)
+

(
−1× 20

38

)
=− 1

19
;

i.e., you expect to lose about a nickel per game. Notice how the zeros tip the balance in favor of the
casino!
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There is an alternative but equivalent way of defining expectation that is useful in some problems. Recall
from Definition 13.3 that

E(X) = ∑
a∈A

a×Pr[X = a].

Let’s look at one term a×Pr[X = a] in the above sum. Notice that Pr[X = a], by definition, is the sum of
Pr[ω] over those sample points ω for which X(ω) = a. And we know that every sample point ω ∈ Ω is in
exactly one of these events X = a. This means we can write out the above definition in an equivalent form
as

E(X) = ∑
ω∈Ω

X(ω)×Pr[ω]. (2)

Linearity of expectation
So far, we’ve computed expectations by brute force: i.e., we have written down the whole distribution and
then added up the contributions for all possible values of the r.v. The real power of expectations is that in
many real-life examples they can be computed much more easily using a simple shortcut. The shortcut is
the following:

Theorem 13.1: For any two random variables X and Y on the same probability space, we have

E(X +Y ) = E(X)+E(Y ).

Also, for any constant c, we have
E(cX) = cE(X).

A note: here X +Y denotes the random variable that is the sum of X and Y , i.e., it takes on the value
X(ω)+Y (ω) at the outcome ω .

Proof: Let’s write out E(X +Y ) using the alternative definition of expectation as given by equation (2):

E(X +Y ) = ∑
ω∈Ω

(X +Y )(ω)×Pr[ω]

= ∑
ω∈Ω

(X(ω)+Y (ω))×Pr[ω]

= ∑
ω∈Ω

(
X(ω)×Pr[ω]

)
+ ∑

ω∈Ω

(
Y (ω)×Pr[ω]

)
= E(X)+E(Y ).

In the last step, we used equation (2) twice.

This completes the proof of the first equality. The proof of the second equality is much simpler and is left
as an exercise. 2

Theorem 13.1 is very powerful: it says that the expectation of a sum of r.v.’s is the sum of their expectations,
no matter what those r.v.’s may be. We can use Theorem 13.1 to conclude things like E(3X−5Y ) = 3E(X)−
5E(Y ). This property is known as linearity of expectation. One important caveat: Theorem 13.1 does not
say that E(XY ) = E(X)E(Y ), or that E( 1

X ) =
1

E(X) etc. These claims are not true in general. It is only sums
and differences and constant multiples of random variables that behave so nicely.

Now let’s see some examples of Theorem 13.1 in action.

4. Two dice again. Here’s a much less painful way of computing E(X), where X is the sum of the scores
of the two dice. Note that X = X1+X2, where Xi is the score on die i. We know from example 1 above
that E(X1) = E(X2) =

7
2 . So by Theorem 13.1 we have E(X) = E(X1)+E(X2) = 7.
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5. More roulette. Suppose we play the above roulette game not once, but 1000 times. Let X be our
expected net winnings. Then X = X1 + X2 + · · ·+ X1000, where Xi is our net winnings in the ith
play. We know from earlier that E(Xi) = − 1

19 for each i. Therefore, by Theorem 13.1, E(X) =

E(X1) +E(X2) + · · ·+E(X1000) = 1000× (− 1
19) = −

1000
19 ≈ 53. So if you play 1000 games, you

expect to lose about $53.

6. Homeworks. Let’s go back and answer our original question about the class of 20 students. Recall
that the r.v. X is the number of students who receive their own homework after shuffling (or equiva-
lently, the number of fixed points). To take advantage of Theorem 13.1, we need to write X as the sum
of simpler r.v.’s. But since X counts the number of times something happens, we can write it as a sum
using the following trick:

X = X1 +X2 + · · ·+X20, where Xi =

{
1 if student i gets her own homework;
0 otherwise

(3)

[You should think about this equation for a moment. Remember that all the X’s are random variables.
What does an equation involving random variables mean? What we mean is that, at every sample
point ω , we have X(ω) = X1(ω)+X2(ω)+ · · ·+X20(ω). Do you see why this is true?]

A 0/1-valued random variable such as Xi is called an indicator random variable of the corresponding
event (in this case, the event that student i gets her own homework). For indicator r.v.’s, the expectation
is particularly easy to calculate. Namely,

E(Xi) = (0×Pr[Xi = 0])+(1×Pr[Xi = 1]) = Pr[Xi = 1].

But in our case, we have

Pr[Xi = 1] = Pr[student i gets her own homework] =
1

20
.

Now we can apply Theorem 13.1 to (3), to get

E(X) = E(X1)+E(X2)+ · · ·+E(X20) = 20× 1
20

= 1.

So we see that the expected number of students who get their own homeworks in a class of size 20
is 1. But this is exactly the same answer as we got for a class of size 3! And indeed, we can easily see
from the above calculation that we would get E(X) = 1 for any class size n: this is because we can
write X = X1 +X2 + · · ·+Xn, and E(Xi) =

1
n for each i.

So the expected number of fixed points in a random permutation of n items is always 1, regardless
of n. Amazing, but true.

7. Coin tosses. Toss a fair coin 100 times. Let the r.v. X be the number of Heads. As in the previous
example, to take advantage of Theorem 13.1 we write

X = X1 +X2 + · · ·+X100,

where Xi is the indicator r.v. of the event that the ith toss is Heads. In other words, Xi = 1 if the ith
toss comes up Heads, and Xi = 0 otherwise. Since the coin is fair, we have

E(Xi) = Pr[Xi = 1] = Pr[ith toss is Heads] = 1
2 .

Using Theorem 13.1, we therefore get

E(X) =
100

∑
i=1

E(Xi) = 100× 1
2 = 50.
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More generally, the expected number of Heads in n tosses of a fair coin is n
2 . And in n tosses of a

biased coin with Heads probability p, the expected number of Heads is np (do you see why?). So
the expectation of a r.v. X ∼ Bin(n, p) is np. Note that it would have been harder to reach the same
conclusion by computing this directly from definition of expectation.

8. Balls and bins. Throw m balls into n bins. Let the r.v. X be the number of balls that land in the
first bin. Then X behaves exactly like the number of Heads in n tosses of a biased coin, with Heads
probability 1

n (do you see why?). So from example 7 we get E(X) = m
n .

In the special case m = n, the expected number of balls in any bin is 1. If we wanted to compute this
directly from the distribution of X , we’d get into a messy calculation involving binomial coefficients.

Here’s another example on the same sample space. Let the r.v. Y be the number of empty bins. The
distribution of Y is horrible to contemplate: to get a feel for this, you might like to write it down
for m = n = 3 (3 balls, 3 bins). However, computing the expectation E(Y ) is a piece of cake using
Theorem 13.1. As usual, let’s write

Y = Y1 +Y2 + · · ·+Yn, (4)

where Yi is the indicator r.v. of the event “bin i is empty”. Again as usual, the expectation of Yi is easy:

E(Yi) = Pr[Yi = 1] = Pr[bin i is empty] =
(

1− 1
n

)m

;

recall that we computed this probability (quite easily) in an earlier lecture. Applying Theorem 13.1
to (4) we therefore have

E(Y ) =
n

∑
i=1

E(Yi) = n
(

1− 1
n

)m

,

a very simple formula, very easily derived.

Let’s see how it behaves in the special case m = n (same number of balls as bins). In this case we get
E(Y ) = n(1− 1

n)
n. Now the quantity (1− 1

n)
n can be approximated (for large enough values of n) by

the number 1
e .2 So we see that

E(Y )→ n
e
≈ 0.368n as n→ ∞.

The bottom line is that, if we throw (say) 1000 balls into 1000 bins, the expected number of empty
bins is about 368.

2More generally, it is a standard fact that for any constant c,

(1+ c
n )

n→ ec as n→ ∞.

We just used this fact in the special case c =−1. The approximation is actually very good even for quite small values of n — try it
yourself! E.g., for n = 20 we already get (1− 1

n )
n=0.358, which is very close to 1

e = 0.367 . . .. The approximation gets better and
better for larger n.
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Some Important Distributions
The first important distribution we learned about in the last Lecture Note is the binomial distribution
Bin(n, p). This is the distribution of the number of Heads in n tosses of a biased coin with probability p to
be Heads. Its expectation is np. In this Note, we explore two other important distributions: the Geometric
and the Poisson distributions. The first one is also associated with a coin tossing experiment.

Geometric Distribution
Question: A biased coin with Heads probability p is tossed repeatedly until the first Head appears. What is
the distribution and the expected number of tosses?

As always, our first step in answering the question must be to define the sample space Ω . A moment’s
thought tells us that

Ω = {H,T H,T T H,T T T H, . . .},

i.e., Ω consists of all sequences over the alphabet {H,T} that end with H and contain no other H’s. This is
our first example of an infinite sample space (though it is still discrete).

What is the probability of a sample point, say ω = T T H? Since successive coin tosses are independent (this
is implicit in the statement of the problem), we have

Pr[T T H] = (1− p)× (1− p)× p = (1− p)2 p.

And generally, for any sequence ω ∈ Ω of length i, we have Pr[ω] = (1− p)i−1 p. To be sure everything is
consistent, we should check that the probabilities of all the sample points add up to 1. Since there is exactly
one sequence of each length i≥ 1 in Ω , we have

∑
ω∈Ω

Pr[ω] =
∞

∑
i=1

(1− p)i−1 p = p
∞

∑
i=0

(1− p)i = p× 1
1− (1− p)

= 1,

as expected. [In the second-last step here, we used the formula for summing a geometric series.]

Now let the random variable X denote the number of tosses in our sequence (i.e., X(ω) is the length of ω).
Its distribution has a special name: it is called the geometric distribution with parameter p (where p is the
probability that the coin comes up Heads on each toss).

Definition 14.1 (geometric distribution): A random variable X for which

Pr[X = i] = (1− p)i−1 p for i = 1,2,3, . . .

is said to have the geometric distribution with parameter p. This is abbreviated as X ∼ Geom(p).

If we plot the distribution of X (i.e., the values Pr[X = i] against i) we get a curve that decreases monotoni-
cally by a factor of 1− p at each step. See Figure 1.

Our next goal is to compute E(X). Despite the fact that X counts something, there’s no obvious way to write
it as a sum of simple r.v.’s as we did in many examples in an earlier lecture note. (Try it!) In a later lecture,
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Figure 1: The Geometric distribution.

we will give a slick way to do this calculation. For now, let’ s just dive in and try a direct computation of
E(X). Note that the distribution of X is quite simple:

Pr[X = i] = (1− p)i−1 p for i = 1,2,3, . . .

So from the definition of expectation we have

E(X) = (1× p)+(2× (1− p)p)+(3× (1− p)2 p)+ · · · = p
∞

∑
i=1

i(1− p)i−1.

This series is a blend of an arithmetic series (the i part) and a geometric series (the (1− p)i−1 part). There
are several ways to sum it. Here is one way, using an auxiliary trick (given in the following Theorem) that
is often very useful. [Ask your TA about other ways.]

Theorem 14.1: Let X be a random variable that takes on only non-negative integer values. Then

E(X) =
∞

∑
i=1

Pr[X ≥ i].

Proof: For notational convenience, let’s write pi = Pr[X = i], for i = 0,1,2, . . .. From the definition of
expectation, we have

E(X) = (0× p0)+(1× p1)+(2× p2)+(3× p3)+(4× p4)+ · · ·
= p1 +(p2 + p2)+(p3 + p3 + p3)+(p4 + p4 + p4 + p4)+ · · ·
= (p1 + p2 + p3 + p4 + · · ·)+(p2 + p3 + p4 + · · ·)+(p3 + p4 + · · ·)+(p4 + · · ·)+ · · ·
= Pr[X ≥ 1]+Pr[X ≥ 2]+Pr[X ≥ 3]+Pr[X ≥ 4]+ · · · .

In the third line, we have regrouped the terms into convenient infinite sums. You should check that you
understand how the fourth line follows from the third. Our “. . .” notation here is a little informal, but the
meaning should be clear. Here is a more rigorous, but perhaps less clear proof:

∞

∑
i=1

Pr[X ≥ i] =
∞

∑
i=1

∞

∑
j=i

Pr[X = j] = ∑
1≤i≤ j<∞

Pr[X = j] =
∞

∑
j=1

j

∑
i=1

Pr[X = j] =
∞

∑
j=1

j×Pr[X = j] = E(X).

2
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An alternative statement of Theorem 14.1 is

E(X) =
∞

∑
i=0

Pr[X > i].

Using Theorem 14.1, it is easy to compute E(X). The key observation is that, for our coin-tossing r.v. X ,

Pr[X ≥ i] = (1− p)i−1. (1)

Why is this? Well, the event “X ≥ i” means that at least i tosses are required. This is exactly equivalent to
saying that the first i−1 tosses are all Tails. And the probability of this event is precisely (1− p)i−1. Now,
plugging equation (1) into Theorem 14.1, we get

E(X) =
∞

∑
i=1

Pr[X ≥ i] =
∞

∑
i=1

(1− p)i−1 = 1+(1− p)+(1− p)2 +(1− p)3 + · · ·= 1
1− (1− p)

=
1
p
.

Here we have used the sum of the geometric series, namely, 1+x+x2 +x3 + · · ·= 1/(1−x) if −1 < x < 1.
So, the expected number of tosses of a biased coin until the first Head appears is 1

p . For a fair coin, the
expected number of tosses is 2.

For posterity, let’s record two important facts we’ve learned about the geometric distribution:

Theorem 14.2: For a random variable X having the geometric distribution with parameter p,

1. E(X) = 1
p ; and

2. Pr[X ≥ i] = (1− p)i−1 for i = 1,2, . . ..

The geometric distribution occurs very often in applications because frequently we are interested in how long
we have to wait before a certain event happens: how many runs before the system fails, how many shots
before one is on target, how many poll samples before we find a Democrat, how many retransmissions of a
packet before successfully reaching the destination, etc. The next section discusses a rather more involved
application, which is important in its own right.

The Coupon Collector’s Problem Revisited
Let’s go back to the coupon collector’s problem we discussed in Note 12. We have calculated the number
of cereal boxes we have to buy to guarantee that with probability 1/2 we have collected at least one copy of
every card. This number is fixed, not random. Suppose now we run the experiment until we have collected
one copy of every card. The number of cereal boxes we have bought is now a random variable. We can ask
about its expectation.

Question: We are trying to collect a set of n different baseball cards. We get the cards by buying boxes
of cereal: each box contains exactly one card, and it is equally likely to be any of the n cards. What is the
expected number of boxes we need to buy until we have collected at least one copy of every card?

The sample space here is similar in flavor to that for our previous coin-tossing example, though rather more
complicated. It consists of all sequences ω over the alphabet {1,2, . . . ,n}, such that

1. ω contains each symbol 1,2, . . . ,n at least once; and

2. the final symbol in ω occurs only once.

CS 70, Summer 2011, Note 14 87



[Check that you understand this!] For any such ω , the probability is just Pr[ω] = 1
ni , where i is the length

of ω (why?). However, it is very hard to figure out how many sample points ω are of length i (try it for the
case n = 3). So we will have a hard time figuring out the distribution of the random variable X , which is the
length of the sequence (i.e., the number of boxes bought).

Fortunately, we can compute the expectation E(X) very easily, using (guess what?) linearity of expectation,
plus the fact we have just learned about the expectation of the geometric distribution. As usual, we would
like to write

X = X1 +X2 + . . .+Xn (2)

for suitable simple random variables Xi. But what should the Xi be? A natural thing to try is to make Xi

equal to the number of boxes we buy while trying to get the ith new card (starting immediately after we’ve
got the (i−1)st new card). With this definition, make sure you believe equation (2) before proceeding.

What does the distribution of Xi look like? Well, X1 is trivial: no matter what happens, we always get a new
card in the first box (since we have none to start with). So Pr[X1 = 1] = 1, and thus E(X1) = 1.

How about X2? Each time we buy a box, we’ll get the same old card with probability 1
n , and a new card with

probability n−1
n . So we can think of buying boxes as flipping a biased coin with Heads probability p = n−1

n ;
then X1 is just the number of tosses until the first Head appears. So X1 has the geometric distribution with
parameter p = n−1

n , and

E(X2) =
n

n−1
.

How about X3? This is very similar to X2 except that now we only get a new card with probability n−2
n (since

there are now two old ones). So X3 has the geometric distribution with parameter p = n−2
n , and

E(X3) =
n

n−2
.

Arguing in the same way, we see that, for i = 1,2, . . . ,n, Xi has the geometric distribution with parameter
p = n−i+1

n , and hence that

E(Xi) =
n

n− i+1
.

Finally, applying linearity of expectation to equation (2), we get

E(X) =
n

∑
i=1

E(Xi) =
n
n
+

n
n−1

+ · · ·+ n
2
+

n
1
= n

n

∑
i=1

1
i
. (3)

This is an exact expression for E(X). We can obtain a tidier form by noting that the sum in it actually has a
very good approximation1, namely:

n

∑
i=1

1
i
≈ lnn+ γ,

where γ = 0.5772 . . . is Euler’s constant.

Thus the expected number of cereal boxes needed to collect n cards is about n(lnn+ γ). This is an excellent
approximation to the exact formula (3) even for quite small values of n. So for example, for n = 100, we
expect to buy about 518 boxes.

1This is another of the little tricks you might like to carry around in your toolbox.
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The Poisson distribution
Throw n balls into n

λ
bins (where λ is a constant). Let X be the number of balls that land in bin 1. Then X

has the binomial distribution with parameters n and p = λ

n , and its expectation is E(X) = np = λ . (Why?)

Let’s look in more detail at the distribution of X (which is a special case of the binomial distribution, in
which the parameter p is of the form λ

n ). For convenience, we’ll write pi = Pr[X = i] for i = 0,1,2, . . ..
Beginning with p0, we have

p0 = Pr[all balls miss bin 1] =
(

1− λ

n

)n

→ e−λ as n→ ∞.

So the probability of no balls landing in bin 1 will be very close to the constant value e−λ when n is large.

What about the other pi? Well, we know from the binomial distribution that

pi =

(
n
i

)
(
λ

n
)i(1− λ

n
)n−i.

Since we know how p0 behaves, let’s look at the ratio p1
p0

:

p1

p0
=

n× λ

n × (1− λ

n )
n−1

(1− λ

n )
n

=
λ

1− λ

n

=
nλ

n−λ
→ λ as n→ ∞.

[Recall that we are assuming λ is a constant.] So, since p0→ e−λ , we see that p1→ λe−λ as n→ ∞.

Now let’s look at the ratio p2
p1

:

p2

p1
=

(n
2

)
× (λ

n )
2× (1− λ

n )
n−2

n× (λ

n )× (1− λ

n )
n−1

=
n−1

2
× λ

n
× 1

(1− λ

n )
=

n−1
n−λ

× λ

2
→ λ

2
as n→ ∞.

So p2→ λ 2

2 e−λ as n→ ∞.

For each value of i, something very similar happens to the ratio pi
pi−1

:

pi

pi−1
=

(n
i

)
× (λ

n )
i× (1− λ

n )
n−i( n

i−1

)
(λ

n )
i−1(1− λ

n )
n−i+1

=
n− i+1

i
× λ

n
× n

n−λ
=

n− i+1
n−λ

× λ

i
→ λ

i
as n→ ∞.

Putting this together, we see that, for each fixed value i,

pi→
λ i

i!
e−λ as n→ ∞.

[You should check this!] In other words, when n is large compared to i, the probability that exactly i balls
fall into bin 1 is very close to λ i

i! e−λ . This motivates the following definition:

Definition 14.2 (Poisson distribution): A random variable X for which

Pr[X = i] =
λ i

i!
e−λ for i = 0,1,2, . . . (4)

is said to have the Poisson distribution with parameter λ . This is abbreviated as X ∼ Poiss(λ ).

CS 70, Summer 2011, Note 14 89



To make sure this definition is valid, we had better check that (4) is in fact a distribution, i.e., that the
probabilities sum to 1. We have

∞

∑
i=0

λ i

i!
e−λ = e−λ

∞

∑
i=0

λ i

i!
= e−λ × eλ = 1.

[In the second-last step here, we used the Taylor series expansion ex = 1+ x+ x2

2! +
x3

3! + · · · .] So this does
indeed meet the requirements to be a distribution.

What is the expectation of a Poisson random variable X? This is a simple hands-on calculation, starting
from the definition of expectation:

E(X) =
∞

∑
i=0

i×Pr[X = i]

=
∞

∑
i=0

i
λ i

i!
e−λ

= e−λ
∞

∑
i=1

λ i

(i−1)!

= λe−λ
∞

∑
i=1

λ i−1

(i−1)!

= λe−λ eλ

= λ .

So the expectation of a Poisson r.v. X with parameter λ is E(X) = λ .

A plot of the Poisson distribution reveals a curve that rises monotonically to a single peak and then decreases
monotonically. The peak is as close as possible to the expected value, i.e., at i = bλc.
We have seen that the Poisson distribution arises as the limit of the number of balls in bin 1 when n balls are
thrown into n

λ
bins. In other words, it is the limit of the binomial distribution with parameters n and p = λ

n
as n→ ∞, with λ being a fixed constant.

The Poisson distribution is also a very widely accepted model for so-called “rare events”, such as mis-
connected phone calls, radioactive emissions, crossovers in chromosomes, etc. This model is appropriate
whenever the occurrences can be assumed to happen randomly with some constant density λ in a continuous
region (of time or space), such that occurrences in disjoint subregions are independent. One can then show
that the number of occurrences in a region of unit size should obey the Poisson distribution with parameter λ .

To see this in a concrete setting, suppose we want to model the number of cell phone users initiating calls in
a network during a time period, of duration say 1 minute. There are many paying customers in the network,
and all of them can potentially make a call during this time period. However, only a very small fraction of
them actually will. Under this scenario, it seems reasonable to make two assumptions:

• The probability of having more than 1 customer initiating a call in any small time interval is negligible.

• The initiation of calls in disjoint time intervals are independent events.

Then if we divide the one-minute time period into n disjoint intervals, than the number of calls X in that
time period can be modeled as binomially distributed with parameter n and probability of success p, the
probability of having a call initiated in a time interval of length 1/n. But what should p be in terms of
the relevant parameters of the problem? If calls are initiated at an average rate of λ calls per minute, then
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E(X) = λ and so np = λ , i.e. p = λ

n . So X ∼ Bin(n, λ

n ). By choosing n large, it is thus reasonable to model
the number of call initiations during a one-minute period to be Poisson with parameter λ .

The Poisson distribution arises naturally in several important contexts. Along with the binomial and geo-
metric distributions (which you have already seen) and the normal distribution (which we shall meet soon),
the Poisson distribution is one of the four distributions you are most likely to find yourself working with.
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Variance
Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes
up Tails, I walk one step to the left. How far do I expect to have traveled from my starting point after n
steps?

Denoting a right-move by +1 and a left-move by −1, we can describe the probability space here as the set
of all words of length n over the alphabet {±1}, each having equal probability 1

2n . For instance, one possible
outcome is (+1,+1,−1, . . . ,−1). Let the r.v. X denote our position (relative to our starting point 0) after n
moves. Thus

X = X1 +X2 + · · ·+Xn,

where Xi =

{
+1 if ith toss is Heads;
−1 otherwise.

Now obviously we have E(X) = 0. The easiest way to see this is to note that E(Xi) = (1
2×1)+(1

2×(−1)) =
0, so by linearity of expectation E(X) = ∑

n
i=1E(Xi) = 0. Thus after n steps, my expected position is 0. But

of course this is not very informative, and is due to the fact that positive and negative deviations from 0
cancel out.

What the above question is really asking is: What is the expected value of |X |, our distance from 0? Un-
fortunately, computing the expected value of |X | turns out to be a little awkward, due to the absolute value
operator. Therefore, rather than consider the r.v. |X |, we will instead look at the r.v. X2. Notice that this also
has the effect of making all deviations from 0 positive, so it should also give a good measure of the distance
traveled. However, because it is the squared distance, we will need to take a square root at the end.

Let’s calculate E(X2):

E(X2) = E((X1 +X2 + · · ·+Xn)
2)

= E(
n

∑
i=1

X2
i +∑

i 6= j
XiX j)

=
n

∑
i=1

E(X2
i )+∑

i 6= j
E(XiX j)

In the last line here, we used linearity of expectation. To proceed, we need to compute E(X2
i ) and E(XiX j)

(for i 6= j). Let’s consider first X2
i . Since Xi can take on only values±1, clearly X2

i = 1 always, so E(X2
i ) = 1.

What about E(XiX j)? Well, XiX j = +1 when Xi = X j = +1 or Xi = X j = −1, and otherwise XiX j = −1.
Also,

Pr[(Xi = X j =+1)∪ (Xi = X j =−1)] = Pr[Xi = X j =+1]+Pr[Xi = X j =−1] =
1
4
+

1
4
=

1
2
,

so XiX j = 1 with probability 1
2 . Therefore XiX j =−1 with probability 1

2 also. Hence E(XiX j) = 0.
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Plugging these values into the above equation gives

E(X2) = (n×1)+0 = n.

So we see that our expected squared distance from 0 is n. One interpretation of this is that we might expect
to be a distance of about

√
n away from 0 after n steps. However, we have to be careful here: we cannot

simply argue that E(|X |) =
√
E(X2) =

√
n. (Do you see why not?) We will see later in the lecture how to

make precise deductions about |X | from knowledge of E(X2).

For the moment, however, let’s agree to view E(X2) as an intuitive measure of “spread” of the r.v. X . In
fact, for a more general r.v. with expectation E(X) = µ , what we are really interested in is E((X−µ)2), the
expected squared distance from the mean. In our random walk example, we had µ = 0, so E((X−µ)2) just
reduces to E(X2).

Definition 15.1 (variance): For a r.v. X with expectation E(X) = µ , the variance of X is defined to be

Var(X) = E((X−µ)2).

The square root σ(X) :=
√

Var(X) is called the standard deviation of X .

The point of the standard deviation is merely to “undo” the squaring in the variance. Thus the standard
deviation is “on the same scale as” the r.v. itself. Since the variance and standard deviation differ just by a
square, it really doesn’t matter which one we choose to work with as we can always compute one from the
other immediately. We shall usually use the variance. For the random walk example above, we have that
Var(X) = n, and the standard deviation of X , σ(X), is

√
n.

The following easy observation gives us a slightly different way to compute the variance that is simpler in
many cases.

Theorem 15.1: For a r.v. X with expectation E(X) = µ , we have Var(X) = E(X2)−µ2.

Proof: From the definition of variance, we have

Var(X) = E((X−µ)2) = E(X2−2µX +µ
2) = E(X2)−2µE(X)+µ

2 = E(X2)−2µ
2 +µ

2 = E(X2)−µ
2.

In the third step here, we used linearity of expectation. 2

Let’s see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from an earlier lecture that E(X)= 7
2 .

So we just need to compute E(X2), which is a routine calculation:

E(X2) =
1
6
(
12 +22 +32 +42 +52 +62)= 91

6
.

Thus from Theorem 15.1

Var(X) = E(X2)− (E(X))2 =
91
6
− 49

4
=

35
12

.

More generally, if X is a random variable that takes on values 1, . . . ,n with equal probability 1/n (i.e.
X has a uniform distribution) , the mean, variance and standard deviation of X are:

E(X) =
n+1

2
, Var(X) =

n2−1
12

, σ(X) =

√
n2−1

12
.

(You should verify these.)
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2. Biased coin. Let X the the number of Heads in n tosses of a biased coin with Heads probability p
(i.e., X has the binomial distribution with parameters n, p). We already know that E(X) = np. Let

Xi =

{
1 if ith toss is Head,
0 otherwise.

We can then write X = X1 +X2 + · · ·+Xn, and then

E(X2) = E((X1 +X2 + · · ·+Xn)
2)

=
n

∑
i=1

E(X2
i )+∑

i 6= j
E(XiX j)

= (n× p)+(n(n−1)× p2)

= n2 p2 +np(1− p).

In the third line here, we have used the facts that E(X2
i ) = p, and that

E(XiX j) = Pr[Xi = X j = 1] = Pr[Xi = 1] ·Pr[X j = 1] = p2,

(since Xi = 1 and X j = 1 are independent events). Note that there are n(n−1) pairs i, j with i 6= j.

Finally, we get that Var(X) = E(X2)− (E(X))2 = np(1− p). As an example, for a fair coin the
expected number of Heads in n tosses is n

2 , and the standard deviation is
√

n
2 . Since the maximum

number of Heads is n, the standard deviation is much less than this maximum number for large n.
This is in contrast to the previous example of the uniformly distributed random variable, where the
standard deviation σ(X) =

√
(n2−1)/12≈ n/

√
12 is of the same order as the largest value n. In this

sense, the spread of a binomially distributed r.v. is much smaller than that of a uniformly distributed
r.v.

Also, notice that in fact Var(X) = ∑i Var(Xi), and the same was true in the random walk example.
This is no coincidence. We will explore for what kinds of random variables this is true later in the
next lecture.

3. Geometric distribution. What is the variance of a geometric r.v. X ∼ Geom(p)? We can calculate
E(X2):

E(X2) = p+4p(1− p)+9p(1− p)2 +16p(1− p)3 +25p(1− p)4 + · · ·

If we multiply this be (1− p) and subtract the result from E(X2), we get:

E(X2) = p + 4p(1− p) + 9p(1− p)2 + 16p(1− p)3 + 25p(1− p)4 + · · ·
(1− p)E(X2) = p(1− p) + 4p(1− p)2 + 9p(1− p)3 + 16p(1− p)4 + · · ·

pE(X2) = p + 3p(1− p) + 5p(1− p)2 + 7p(1− p)3 + 9p(1− p)4 + · · · .

Rearranging terms, we get:

= 2[p+2p(1− p)+3p(1− p)2 +4p(1− p)3 +5p(1− p)4 + · · · ]
− [p+ p(1− p)+ p(1− p)2 + p(1− p)3 + p(1− p)4 + · · · ]

= 2E(X)−1.

In the last line, we used the fact that

E(X) = p+2p(1− p)+3p(1− p)2 +4p(1− p)3 +5p(1− p)4 + · · ·
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and that
p+ p(1− p)+ p(1− p)2 + p(1− p)3 + p(1− p)4 + · · ·= 1

is the sum of the probabilities of the outcomes in a geometric distribution. Thus, we get

pE(X2) = 2E(X)−1 =
2
p
−1 =

2− p
p

,

recalling that E(X) = 1
p for a geometric r.v. Dividing both sides by p, we get

E(X2) =
2− p

p2 .

Finally, we can compute the variance:

Var(X) = E(X2)− (E(X))2 =
2− p

p2 −
1
p2 =

1− p
p2 .

4. Poisson distribution. What is the variance of a Poisson r.v. X? We can calculate E(X2):

E(X2)=
∞

∑
i=0

i2e−λ λ i

i!
= λ

∞

∑
i=1

ie−λ λ i−1

(i−1)!
= λ

(
∞

∑
i=1

(i−1)e−λ λ i−1

(i−1)!
+

∞

∑
i=1

e−λ λ i−1

(i−1)!

)
= λ (λ +1).

[Check you follow each of these steps. In the last step, the two sums are respectively E(X) and
∑i Pr[X = i] = 1.]

Finally, we get Var(X) = E(X2)− (E(X))2 = λ . So, for a Poisson random variable, the expectation
and variance are equal.

5. Number of fixed points. Let X be the number of fixed points in a random permutation of n items (i.e.,
the number of students in a class of size n who receive their own homework after shuffling). We saw
in an earlier lecture that E(X) = 1 (regardless of n). To compute E(X2), write X = X1 +X2 + · · ·+Xn,
where

Xi =

{
1 if i is a fixed point;
0 otherwise.

Then as usual we have

E(X2) =
n

∑
i=1

E(X2
i )+∑

i 6= j
E(XiX j). (1)

Since Xi is an indicator r.v., we have that E(X2
i ) = Pr[Xi = 1] = 1

n . Since both Xi and X j are indicators,
we can compute E(XiX j) as follows:

E(XiX j) = Pr[Xi = 1∩X j = 1] = Pr[both i and j are fixed points] =
1

n(n−1)
.

[Check that you understand the last step here.] Plugging this into equation (1) we get

E(X2) = (n× 1
n)+(n(n−1)× 1

n(n−1)) = 1+1 = 2.

Thus Var(X) = E(X2)− (E(X))2 = 2− 1 = 1. In other words, the variance and the mean are both
equal to 1. Like the mean, the variance is also independent of n. Intuitively at least, this means that it
is unlikely that there will be more than a small number of fixed points even when the number of items,
n, is very large.
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Chebyshev’s Inequality
We have seen that, intuitively, the variance (or, more correctly the standard deviation) is a measure of
“spread”, or deviation from the mean. Our next goal is to make this intuition quantitatively precise. What
we can show is the following:

Theorem 15.2: [Chebyshev’s Inequality] For a random variable X with expectation E(X) = µ , and for any
α > 0,

Pr[|X−µ| ≥ α]≤ Var(X)

α2 .

Before proving Chebyshev’s inequality, let’s pause to consider what it says. It tells us that the probability of
any given deviation, α , from the mean, either above it or below it (note the absolute value sign), is at most
Var(X)

α2 . As expected, this deviation probability will be small if the variance is small. An immediate corollary
of Chebyshev’s inequality is the following:

Corollary 15.3: For a random variable X with expectation E(X) = µ , and standard deviation σ =
√

Var(X),

Pr[|X−µ| ≥ βσ ]≤ 1
β 2 .

Proof: Plug α = βσ into Chebyshev’s inequality. 2

So, for example, we see that the probability of deviating from the mean by more than (say) two standard
deviations on either side is at most 1

4 . In this sense, the standard deviation is a good working definition of
the “width” or “spread” of a distribution.

We should now go back and prove Chebyshev’s inequality. The proof will make use of the following simpler
bound, which applies only to non-negative random variables (i.e., r.v.’s which take only values ≥ 0).

Theorem 15.4: [Markov’s Inequality] For a non-negative random variable X with expectation E(X) = µ ,
and any α > 0,

Pr[X ≥ α]≤ E(X)

α
.

Proof: From the definition of expectation, we have

E(X) = ∑
a

a×Pr[X = a]

= ∑
a<α

a×Pr[X = a]+ ∑
a≥α

a×Pr[X = a]

≥ ∑
a≥α

a×Pr[X = a]

≥ α ∑
a≥α

Pr[X = a]

= α Pr[X ≥ α].

The crucial step here is the third line, where we have used the fact that X takes on only non-negative values
and consequently a≥ 0 and Pr[X = a]≥ 0. (This step would not be valid if X could be negative, since if X
can take on negative values, then we might have a×Pr[X = a]< 0.) 2

Now we can prove Chebyshev’s inequality quite easily.

Proof of Theorem 15.2: Define the r.v. Y = (X − µ)2. Note that E(Y ) = E((X − µ)2) = Var(X). Also,
notice that the probability we are interested in, Pr[|X −µ| ≥ α], is exactly the same as Pr[Y ≥ α2]. (This is
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because the inequality |X −µ| ≥ α is true if and only if (X −µ)2 ≥ α2 is true, i.e., if and only if Y ≥ α2 is
true.) Moreover, Y is obviously non-negative, so we can apply Markov’s inequality to it to get

Pr[Y ≥ α
2]≤ E(Y )

α2 =
Var(X)

α2 .

This completes the proof. 2

Let’s apply Chebyshev’s inequality to answer our question about the random walk at the beginning of this
lecture note. Recall that X is our position after n steps, and that E(X) = 0, Var(X) = n. Corollary 15.3 says
that, for any β > 0, Pr[|X | ≥ β

√
n ] ≤ 1

β 2 . Thus for example, if we take n = 106 steps, the probability that

we end up more than 10000 steps away from our starting point is at most 1
100 .

Here are a few more examples of applications of Chebyshev’s inequality (you should check the algebra in
them):

1. Coin tosses. Let X be the number of Heads in n tosses of a fair coin. The probability that X deviates
from µ = n

2 by more than
√

n is at most 1
4 . The probability that it deviates by more than 5

√
n is at

most 1
100 .

2. Poisson distribution. Let X be a Poisson r.v. with parameter λ . The probability that X deviates from
λ by more than 2

√
λ is at most 1

4 .

3. Fixed points. Let X be the number of fixed points in a random permutation of n items; recall that
E(X) = Var(X) = 1. Thus the probability that more than (say) 10 students get their own homeworks
after shuffling is at most 1

100 , however large n is1.

1In more detail: Pr[X > 10] = Pr[X ≥ 11]≤ Pr[|X−1]≥ 10]≤ Var(X)
100 = 1

100 .
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Lecture 16

Polling and the Law of Large Numbers
Polling
Question: We want to estimate the proportion p of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
0.1 of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and it shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the
random variable Sn. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the value An =

1
n Sn.

Now as has often been the case, we will find it helpful to write Sn = X1 +X2 + · · ·+Xn, where

Xi =

{
1 if person i in sample is a Democrat;
0 otherwise.

Note that each Xi can be viewed as a coin toss, with Heads probability p (though of course we do not
know the value of p). And the coin tosses are independent.1 Hence, Sn is a binomial random variable with
parameters n and p.

What is the expectation of our estimate?

E(An) = E(1
n Sn) =

1
nE(Sn) =

1
n × (np) = p.

So for any value of n, our estimate will always have the correct expectation p. [Such a r.v. is often called an
unbiased estimator of p.] Now presumably, as we increase our sample size n, our estimate should get more
and more accurate. This will show up in the fact that the variance decreases with n: i.e., as n increases, the
probability that we are far from the mean p will get smaller.

To see this, we need to compute Var(An). But An =
1
n Sn, which is just a constant times a binomial random

variable.

Theorem 16.1: For any random variable X and constant c, we have

Var(cX) = c2Var(X).

The proof of this theorem follows directly from the definition of the variance. (Try it yourself.) Now to
compute Var(An):

Var(An) = Var(1
n Sn) = (1

n)
2Var(Sn) = (1

n)
2

n

∑
i=1

Var(Xi) =
σ2

n
,

1We are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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where we have written σ2 for the variance of each of the Xi. The third equality follows from the calculation
we did for the binomial random variable in the last lecture note. So we see that the variance of An decreases
linearly with n. This fact ensures that, as we take larger and larger sample sizes n, the probability that we
deviate much from the expectation p gets smaller and smaller.

Let’s now use Chebyshev’s inequality to figure out how large n has to be to ensure a specified accuracy
in our estimate of the proportion of Democrats p. A natural way to measure this is for us to specify two
parameters, ε and δ , both in the range (0,1). The parameter ε controls the error we are prepared to tolerate
in our estimate, and δ controls the confidence we want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample size n have to be in order
to ensure that

Pr[|An− p| ≥ ε]≤ δ ?

In our original question, we had ε = 0.1 and δ = 0.05.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(An),
this will be quite simple. From Chebyshev’s inequality, we have

Pr[|An− p| ≥ ε]≤ Var(An)

ε2 =
σ2

nε2 .

To make this less than the desired value δ , we need to set

n≥ σ
2× 1

ε2δ
. (1)

Now recall that σ2 = Var(Xi) is the variance of a single sample Xi. So, since Xi is a 0/1-valued r.v., we have
σ2 = p(1− p), and inequality (1) becomes

n≥ p(1− p)× 1
ε2δ

. (2)

Plugging in ε = 0.1 and δ = 0.05, we see that a sample size of n = 2000p(1− p) is sufficient.

At this point you should be worried. Why? Because our formula for the sample size contains p, and this is
precisely the quantity we are trying to estimate! But we can get around this. The largest possible value of
p(1− p) is 1/4 (achieved when p = 1/2.) Hence, if we pick n = 2000× (1/4) = 500, then no matter what
the value of p is, the sample size is sufficient.

Estimating a general expectation
What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v. Xi is the wealth of the ith person in our sample. Clearly E(Xi) = µ , the
average wealth (which is what we are trying to estimate). And our estimate will again be An =

1
n ∑

n
i=1 Xi, for

a suitably chosen sample size n. We again have E(An) = µ . And as long as Var(∑n
=1 Xi) = ∑

n
i=1 Var(Xi) , we

have as before Var(An) =
σ2

n , where σ2 = Var(Xi) is the common variance of the Xi’s. From equation (1), it
is enough for the sample size n to satisfy

n≥ σ
2× 1

ε2δ
. (3)

Here ε and δ are the desired error and confidence respectively, as before. Now of course we don’t know σ2,
appearing in equation (3). In practice, we would use an upper bound on σ2 (just as we used the fact that
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σ2 = p(1− p) ≤ 1/4 in the Democrats problem). Plugging these bounds into equation (3) will ensure that
our sample size is large enough.

Let us recapitulate the three properties we used about the random variables Xi’s in the above derivation:

(1) E(Xi) = µ, i = 1, . . . ,n.

(2) Var(Xi) = σ2, i = 1, . . . ,n.

(3) Var(∑n
i=1 Xi) = ∑

n
i=1 Var(Xi).

The first two properties hold if the Xi’s have the same distribution. The third property holds if the random
variables are mutually independent. We have already defined the notion of independence for events, and we
will define independence for random variables in the next lecture note. Intuitively, two random variables
are independent if the events "associated" with them are independent. In the polling example when the
Xi’s are indicator random variables for flipping Heads, the random variables are independent if the flips are
independent. Random variables which have the same distribution and are independent are called independent
identically distributed (abbreviated as i.i.d.).

As a further example, suppose we are trying to estimate the average rate of emission from a radioactive
source, and we are willing to assume that the emissions follow a Poisson distribution with some unknown
parameter λ — of course, this λ is precisely the expectation we are trying to estimate. Now in this case we
have σ2 = λ (see the previous lecture note), so a sample size of n = λ

ε2δ
suffices. (Again, in practice we

would use an upper bound on λ .)

The Law of Large Numbers
The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers (LLN). This asserts that, if we observe some random
variable many times, and take the average of the observations, then this average will converge to a single
value, which is of course the expectation of the random variable. In other words, averaging tends to smooth
out any large fluctuations, and the more averaging we do the better the smoothing.

Theorem 16.2: [Law of Large Numbers] Let X1,X2, . . . ,Xn be i.i.d. random variables with common ex-
pectation µ = E(Xi). Define An =

1
n ∑

n
i=1 Xi. Then for any α > 0, we have

Pr [|An−µ| ≥ α]→ 0 as n→ ∞.

Proof: Let Var(Xi) = σ2 be the common variance of the r.v.’s; we assume that σ2 is finite2. With this
(relatively mild) assumption, the LLN is an immediate consequence of Chebyshev’s Inequality. For, as we
have seen above, E(An) = µ and Var(An) =

σ2

n , so by Chebyshev we have

Pr [|An−µ| ≥ α]≤ Var(An)

α2 =
σ2

nα2 → 0 as n→ ∞.

This completes the proof. 2

Notice that the LLN says that the probability of any deviation α from the mean, however small, tends to
zero as the number of observations n in our average tends to infinity. Thus by taking n large enough, we can
make the probability of any given deviation as small as we like.

2If σ2 is not finite, the LLN still holds but the proof is much trickier.
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Lecture 17

Multiple Random Variables and Applications to Inference
In many probability problems, we have to deal with multiple r.v.’s defined on the same probability space.
We have already seen examples of that: for example, we saw that computing the expectation and variance
of a binomial r.v. X is easier if we express it as a sum X = ∑

n
i=1 Xi, where Xi represents the result of the ith

trial. Multiple r.v.’s arise naturally in the case of inference problems, where we observe certain quantities
and use our observations to draw inferences about other hidden quantities. This Note starts by developing
some of the basics of handling multiple r.v.’s, then applies those concepts to several examples of inference
problems.

Joint Distributions
Consider two random variables X and Y defined on the same probability space. By linearity of expectation,
we know that E(X +Y ) = E(X)+E(Y ). Since E(X) can be calculated if we know the distribution of X and
E(Y ) can be calculated if we know the distribution of Y , this means that E(X +Y ) can be computed knowing
only the individual distributions of X and Y . In particular, to compute E(X +Y ), no information is needed
about the relationship between X and Y . However, this happy situation is unusual. For instance, consider
the situation where we need to compute, say, E((X +Y )2), as arose when we computed the variance of a
binomial r.v. Now we need information about the association or relationship between X and Y , if we want
to compute E((X +Y )2). This is because E((X +Y )2) = E(X2)+2E(XY )+E(Y 2), and E(XY ) depends on
the relationship between X and Y . How can we capture such a relationship, mathematically?

Recall that the distribution of a single random variable X is the collection of the probabilities of all events
X = a, for all possible values of a that X can take on. When we have two random variables X and Y ,
we can think of (X ,Y ) as a “two-dimensional” random variable, in which case the events of interest are
X = a∩Y = b for all possible values of (a,b) that (X ,Y ) can take on. Thus, a natural generalization of the
notion of distribution to multiple random variables is the following.

Definition 17.1 (joint distribution): The joint distribution of two discrete random variables X and Y is the
collection of values {(a,b,Pr[X = a∩Y = b]) : (a,b)∈A ×B}, where A and B are the sets of all possible
values taken by X and Y respectively.

This notion obviously generalizes to three or more random variables. Since we will write Pr[X = a∩Y = b]
quite often, we will abbreviate it to Pr[X = a,Y = b].

Just like the distribution of a single random variable, the joint distribution is normalized, i.e.

∑
a∈A ,b∈B

Pr[X = a,Y = b] = 1.

This follows from noticing that the events X = a∩Y = b (where a ranges over A and b ranges over B)
partition the sample space.

The joint distribution between two random variables fully describes their statistical relationships, and pro-
vides enough information for computing any probabilities and expectations involving the two random vari-

CS 70, Summer 2011, Lecture 17 101



Figure 1: A tabular representation of a joint distribution.

ables. For example,

E(XY ) = ∑
c

c×Pr[XY = c] = ∑
a

∑
b

ab×Pr[X = a,Y = b].

More generally, if f is any function on R×R,

E( f (X ,Y )) = ∑
c

c×Pr[ f (X ,Y ) = c] = ∑
a

∑
b

f (a,b)×Pr[X = a,Y = b].

Moreover, the individual distributions of X and Y can be recovered from the joint distribution as follows:

Pr[X = a] = ∑
b∈B

Pr[X = a,Y = b] ∀a ∈A , (1)

Pr[Y = b] = ∑
a∈A

Pr[X = a,Y = b] ∀b ∈B. (2)

The first follows from the fact that the events Y = b (where b ranges over B) form a partition of the sample
space Ω, and so the events X = a∩Y = b (where b ranges over B) are disjoint and their union yields the
event X = a. The second fact follows for similar reasons.

Pictorially, one can think of the joint distribution values as entries filling a table, with the columns indexed
by the values that X can take on and the rows indexed by the values Y can take on (see Figure 1). To get the
distribution of X , all one needs to do is to sum the entries in each of the columns. To get the distribution of Y ,
just sum the entries in each of the rows. This process is sometimes called marginalization and the individual
distributions are sometimes called marginal distributions to differentiate them from the joint distribution.

Independent Random Variables
Independence for random variables is defined in analogous fashion to independence for events:

Definition 17.2 (independent r.v.’s): Random variables X and Y on the same probability space are said
to be independent if the events X = a and Y = b are independent for all values a,b. Equivalently, the joint
distribution of independent r.v.’s decomposes as

Pr[X = a,Y = b] = Pr[X = a]Pr[Y = b] ∀a,b.

Note that for independent r.v.’s, the joint distribution is fully specified by the marginal distributions.

Mutual independence of more than two r.v.’s is defined similarly. A very important example of independent
r.v.’s is a sequence of indicator r.v.’s for independent events. Thus, for example, if Xi is an indicator r.v. for
the ith toss of a coin being Heads, then X1,X2, . . . ,Xn are mutually independent r.v.’s.
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We saw that the expectation of a sum of r.v.’s is the sum of the expectations of the individual r.v.’s. This is
not true in general for variance. However, it turns out to be true if the random variables are independent. To
see this, first we look at the expectation of a product of independent r.v.’s (which is a quantity that frequently
shows up in variance calculations, as we have seen).

Theorem 17.1: For independent random variables X ,Y , we have E(XY ) = E(X)E(Y ).

Proof: We have

E(XY ) = ∑
a

∑
b

ab×Pr[X = a,Y = b]

= ∑
a

∑
b

ab×Pr[X = a]×Pr[Y = b]

= ∑
a

a×Pr[X = a]×∑
b

b×Pr[Y = b]

=

(
∑
a

a×Pr[X = a]
)
×

(
∑
b

b×Pr[Y = b]

)
= E(X)×E(Y ),

as claimed. In the second line we made crucial use of independence. 2

For example, this theorem would have allowed us to conclude immediately in our random walk example at
the beginning of Lecture Note 15 that E(XiX j) = E(Xi)E(X j) = 0, without the need for a calculation.

We now use the above theorem to conclude a nice property of the variance of independent random variables.

Theorem 17.2: For independent random variables X ,Y , we have Var(X +Y ) = Var(X)+Var(Y ).

Proof: From the alternative formula for variance in Theorem 15.1, we have, using linearity of expectation
extensively,

Var(X +Y ) = E((X +Y )2)− (E(X +Y ))2

= E(X2)+E(Y 2)+2E(XY )− (E(X)+E(Y ))2

= (E(X2)−E(X)2)+(E(Y 2)−E(Y )2)+2(E(XY )−E(X)E(Y ))
= Var(X)+Var(Y )+2(E(XY )−E(X)E(Y )).

Now because X ,Y are independent, by Theorem 17.1 the final term in this expression is zero. Hence we get
our result.

Here is an alternative proof. We can assume, without loss of generality, that E(X) = E(Y ) = E(X +Y ) = 0.
In this case, Var(X) = E(X2), Var(Y ) = E(Y 2), and

Var(X+Y )=E((X+Y )2)=E(X2)+2E(XY )+E(Y 2)=Var(X)+2E(X)E(Y )+Var(Y )=Var(X)+Var(Y ).

(If E(X) 6= 0 or E(Y ) 6= 0, replace X with X ′ = X−E(X) and Y with Y ′ =Y −E(Y ), noting that substitution
leaves all the variances unchanged. Then the above proof goes through.) 2

Note: The expression E(XY )−E(X)E(Y ) appearing in the above proof is called the covariance of X and Y ,
and is a measure of the dependence between X ,Y . It is zero when X ,Y are independent.

Theorem 17.2 can be used to simplify several of our variance calculations in Lecture Note 15. For example,
in the random walk example of that Lecture Note, since the Xi are independent r.v.’s with Var(Xi) = 1
for each i, we have Var(X) = Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn) = 1 + · · ·+ 1 = n× 1 = n.
And in the biased coin example (example 2) the Xi are independent with Var(Xi) = p(1− p), so we have
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Var(X) = Var(X1 + · · ·+Xn) = Var(X1)+ · · ·+Var(Xn) = np(1− p). Note, however, that we don’t get any
simplification in example 4 of Lecture Note 15 (fixed points) because the Xi are not independent.

It is very important to remember that neither Theorem 17.1 nor Theorem 17.2 is true in general, without
the assumption that X ,Y are independent. Here is a simple example. Let X be an indicator r.v. with Pr[X =
1] = p. Now E(X ×X) = E(X2) = p, but E(X)×E(X) = E(X)2 = p2, and these two values are not equal
(because of course X and X are not independent!).

Another note of caution: it is not true that Var(cX) = cVar(X) for a constant c. In fact, the following is true:

Theorem 17.3: For any random variable X and constant c, Var(cX) = c2Var(X).

Proof: From the definition of variance, we have

Var(cX) = E((cX−E(cX))2) = E((cX− cE(X))2) = E(c2(X−E(X))2) = c2Var(X).

2

As an aside, we can contrast the following two cases.

• If X1,X2, . . . ,Xn are independent and identically distributed random variables, and we let X = X1 +
· · ·+Xn be their sum, then Var(X) = Var(X1)+ · · ·+Var(Xn) = n×Var(X1).

• On the other hand, if we let Y = X1 +X1 + · · ·+X1 = nX1 be the sum of n copies of the same r.v., then
Var(Y ) = n2 Var(X1)—which is much larger than Var(X).

So if we sum n independent and identically distributed random variables, the standard deviation is propor-
tional to

√
n, whereas if we sum n dependent random variables, the standard deviation can be much larger:

it might be proportional to n.

Conditional Distribution and Expectation
In an earlier lecture, we discussed the concept of conditional probability of an event A given an event B. This
concept allows us to define a notion of conditional distribution of a random variable given another random
variable.

Definition 17.3 (conditional distribution): The conditional distribution of X given Y = b is the collection
of values {(a,Pr[X = a|Y = b]) : a ∈A }, where A is the set of all possible values taken by X .

The conditional distribution can be calculated from the joint and marginal distributions:

Pr[X = a|Y = b] =
Pr[X = a,Y = b]

Pr[Y = b]
.

It follows from eqn. (2) that

∑
a∈A

Pr[X = a|Y = b] = 1,

so the conditional distribution is normalized, just like a (unconditional) distribution. Note that if X and Y
are independent r.v.’s, Pr[X = a|Y = b] = Pr[X = a] for every a,b, i.e., the conditional and unconditional
distributions of X are the same.

One can also naturally talk about the conditional distribution of multiple random variables. For example,
the conditional distribution of X and Y given Z = c is simply given by

{(a,b,Pr[X = a,Y = b|Z = c]) : a ∈A ,b ∈B}.
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Conditional distributions have exactly the same properties as (unconditional) distributions. Therefore what-
ever we do with distributions we can do with conditional distributions. For example, one can compute
expectations of conditional distributions. This leads to the concept of conditional expectation.

Definition 17.4 (conditional expectation): Let X and Y be two r.v.’s defined on the same probability space.
The conditional expectation of X given Y = b is defined to be:

E(X |Y = b) := ∑
a∈A

a×Pr[X = a|Y = b].

Recall that conditional probabilities often help us to calculate probabilities of events by means of the total
probability law. Similarly, conditional expectations are often useful to compute expectations via the total
expectation law:

E(X) = ∑
a∈A

aPr[X = a]

= ∑
a∈A

a ∑
b∈B

Pr[Y = b]Pr[X = a|Y = b]

= ∑
b∈B

Pr[Y = b] ∑
a∈A

aPr[X = a|Y = b]

= ∑
b∈B

Pr[Y = b]×E(X |Y = b).

This formula is quite intuitive: to calculate the expectation of the r.v. X , first calculate the conditional
expectation of X given each of the various values of Y . Then sum them, weighted by the probabilities Y
takes on the various values. This formula is another instance of the divide into cases strategy.

For example, let us use the total expectation law to give an alternative way of computing the expectation of
a geometrically distributed r.v. X . (In Lecture Note 14 we did this in a different way.) Recall that X is the
number of independent trials until we get our first success. Let Y be the indicator r.v. of the event that the
first trial is successful. Using the total expectation law,

E(X) = Pr[Y = 1]×E(X |Y = 1)+Pr[Y = 0]×E(X |Y = 0)

= pE(X |Y = 1)+(1− p)E(X |Y = 0). (3)

Now, if Y = 1, the first trial is already successful, and X = 1 with probability 1. Hence, E(X |Y = 1) = 1.
What about if Y = 0? If the first trial is unsuccessful, we are back to square one and have to continue trying.
Hence the number of additional trials after the first trial is another geometric r.v. with the same parameter p,
and E(X |Y = 0) = 1+E(X). Substituting into (3), we get:

E(X) = p+(1− p)(1+E(X)).

Upon solving this equation, we get E(X) = 1
p .

It is interesting to see that while linearity of expectation was a useful tool to compute the expectation of
a binomially distributed r.v., the total expectation rule is a more natural tool to compute the expectation
of a geometrically distributed r.v. Both are tools that allow us to compute expectations without directly
computing distributions.

Inference
One of the major uses of probability is to provide a systematic framework to perform inference under
uncertainty. A few specific applications are:
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• communications: Information bits are sent over a noisy physical channel (wireless, DSL phone line,
etc.). From the received symbols, the recipient wants to make a decision about what bits were trans-
mitted.

• control: A spacecraft needs to be landed on the moon. From noisy measurements by motion sensors,
the spacecraft control software needs to estimate the current position of the spacecraft relative to the
moon surface so that the craft can be maneuvered appropriately.

• object recognition: From an image containing an object, we would like automated tools to recognize
what type of object it is.

• speech recognition: From hearing noisy utterances, one wants to recognize what is being said.

• investing: By observing past performance of a stock, one wants to estimate its intrinsic quality and
hence make a decision on whether and how much to invest in it.

All of the above problems can be modeled with the following ingredients:

• There is a random variable X representing some hidden quantity, which cannot be directly observed
but in which we are interested. X might be the value of an information bit in a communication
scenario, position of the spacecraft in the control application, or the object class in the recognition
problem.

• There are random variables Y1,Y2, . . . ,Yn representing the observations. They might be the outputs of
a noisy channel at different times, the pixel values of an image, the values of the stocks on successive
days, etc.

• The distribution of X , called the prior distribution. This can be interpreted as the knowledge about X
before seeing the observations.

• The conditional distribution of Y1, . . . ,Yn given X . This models the noise or randomness in the obser-
vations.

Since the observations are noisy, there is in general no hope of knowing what the exact value of X is given
the observations. Instead, we would like to know which values of X are most likely, and how likely they
are. All available knowledge about X can be summarized by the conditional distribution of X given the
observations. We don’t know what the exact value of X is, but the conditional distribution tells us which
values of X are more likely and which are less likely. Based on this information, intelligent decisions can be
made.

Inference Example 1: Multi-armed Bandits
Question: You walk into a casino. There are several slot machines (bandits). You know some slot machines
have odds very favorable to you, some have less favorable odds, and some have very poor odds. However,
you don’t know which are which. You start playing on them, and by observing the outcomes, you want to
learn which is which so that you can intelligently figure out which machine to play on (or not play at all,
which may be the most intelligent decision).

Stripped-down version: Suppose there are n biased coins. Coin i has probability pi of coming up Heads;
however, you don’t know which is which. You randomly pick one coin and flip it. If the coin comes up
Heads you win $1, and if it comes up Tails you lose $1. What is the probability of winning? What is the
probability of winning on the next flip given you have observed a Heads with this coin? Given you have
observed two Heads in a row? Would you bet on the next flip?

106 CS 70, Summer 2011, Lecture 17



Modeling using Random Variables

Let X be the coin randomly chosen, and Yj be the indicator r.v. for the event that the jth flip of this randomly
chosen coin comes up Heads. Since we don’t know which coin we have chosen, X is the hidden quantity.
The Yj’s are the observations.

Predicting the First Flip

The first question asks for Pr[Y1 = 1]. First we calculate the joint distribution of X and Y1:

Pr[X = i,Y1 = H] = Pr[X = i]Pr[Y1 = H|X = i] =
pi

n
. (4)

Applying (2), we get:

Pr[Y1 = H] =
n

∑
i=1

Pr[X = i,Y1 = H] =
1
n

n

∑
i=1

pi. (5)

Note that combining the above two equations, we are in effect using the fact that:

Pr[Y1 = H] =
n

∑
i=1

Pr[X = i]Pr[Y1 = H|X = i]. (6)

This is just the Total Probability Rule for events applied to random variables. Once you get familiar with
this type of calculation, you can bypass the intermediate calculation of the joint distribution and directly
write this down.

Predicting the Second Flip after Observing the First

Now, given that we observed Y1 = H, we have learned something about the randomly chosen coin X . This
knowledge is captured by the conditional distribution

Pr[X = i|Y1 = H] =
Pr[X = i,Y1 = H]

Pr[Y1 = H]
=

pi

∑
n
j=1 p j

,

using eqns. (4) and (5).

Note that when we substitute eqn. (4) into the above equation, we are in effect using:

Pr[X = i|Y1 = H] =
Pr[X = i]Pr[Y1 = H|X = i]

Pr[Y1 = H]
.

This is just Bayes’ rule for events applied to random variables. Just as for events, this rule tells us how
to update our knowledge, based on the observation. In particular, {(i,Pr[X = i]) : i = 1, . . . ,n} is the prior
distribution of the hidden X ; {(i,Pr[X = i|Y1 = H]) : i = 1, . . . ,n} is the posterior distribution of X given the
observation. Bayes’ rule updates the prior distribution to yield the posterior distribution.

Now we can calculate the probability of Heads on the second flip, if we use the same coin we used for the
first flip:

Pr[Y2 = H|Y1 = H] =
n

∑
i=1

Pr[X = i|Y1 = H]Pr[Y2 = H|X = i,Y1 = H]. (7)

This can be interpreted as the total probability rule (6) but in a new probability space where we condition
on the event Y1 = H. In other words, the original probability space uses Pr[·] for its probability assignment;
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the new probability space uses Pr[·|Y1 = H] for its probability assignment. Since the new probability space
is, well, a probability space, all our formulas (such as the total probability rule) can be applied to the new
probability space Pr[·|Y1 = H] and they will remain valid in this new context. (It is a good exercise to verify
the formula (7) from first principles.)

Now let us calculate the various probabilities on the right hand side of (7). The probability Pr[X = i|Y1 =
H] is just the posterior distribution of X given the observation, which we have already calculated above.
What about the probability Pr[Y2 = H|X = i,Y1 = H]? There are two conditioning events: X = i and Y1 =
H. But here is the thing: once we know that the unknown coin is coin i, then knowing the first flip is a
Head is redundant and provides no further statistical information about the outcome of the second flip: the
probability of getting a Heads on the second flip is just pi. In other words,

Pr[Y2 = H|X = i,Y1 = H] = Pr[Y2 = H|X = i] = pi. (8)

The events Y1 = H and Y2 = H are said to be independent conditional on the event X = i. Since in fact Y1 = a
and Y2 = b are independent given X = i for all a,b, i, we will say that the random variables Y1 and Y2 are
independent given the random variable X .

Definition 17.5 (Conditional Independence): Two events A and B are said to be conditionally independent
given a third event C if

Pr[A∩B|C] = Pr[A|C]×Pr[B|C].

Two random variables X and Y are said to be conditionally independent given a third random variable Z if
for every a,b,c,

Pr[X = a,Y = b|Z = c] = Pr[X = a|Z = c]×Pr[Y = b|Z = c].

Going back to our coin example, note that the r.v.’s Y1 and Y2 are definitely not independent. Knowing the
outcome of Y1 tells us some information about the identity of the coin (X) and hence allows us to infer
something about Y2. However, if we already know X , then the outcomes of the different flips Y1 and Y2 are
independent. Therefore, Y1 and Y2 are conditionally independent given X .

Now substituting (8) into (7), we get the probability of winning using this coin in the second flip:

Pr[Y2 = H|Y1 = H] =
n

∑
i=1

Pr[X = i|Y1 = H]Pr[Y2 = H|X = i] =
∑

n
i=1 p2

i

∑
n
i=1 pi

.

It can be shown (using the Cauchy-Schwarz inequality) that n∑i p2
i ≥ (∑i pi)

2, which implies that

Pr[Y2 = H|Y1 = H] =
∑

n
i=1 p2

i

∑
n
i=1 pi

≥ ∑
n
i=1 pi

n
= Pr[Y1 = H].

Thus our observation of a Heads on the first flip increases the probability that the second toss is Heads. This,
of course, is intuitively reasonable, because the posterior distribution puts larger weight on the coins with
larger values of pi.
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Figure 2: The conditional distributions of X given no observations, 1 Heads, and 2 Heads.

Predicting the Third Flip After Observing the First Two

Using Bayes’ rule and the total probability rule, we can compute the posterior distribution of X given that
we observed two Heads in a row:

Pr[X = i|Y1 = H,Y2 = H] =
Pr[X = i]Pr[Y1 = H,Y2 = H|X = i]

Pr[Y1 = H,Y2 = H]

=
Pr[X = i]Pr[Y1 = H,Y2 = H|X = i]

∑
n
j=1 Pr[X = j]Pr[Y1 = H,Y2 = H|X = j]

=
Pr[X = i]Pr[Y1 = H|X = i]Pr[Y2 = H|X = i]

∑
n
j=1 Pr[X = j]Pr[Y1 = H|X = j]Pr[Y2 = H|X = j]

=
p2

i

∑
n
j=1 p2

j

The probability of getting a win on the third flip using the same coin is then:

Pr[Y3 = H|Y1 = H,Y2 = H] =
n

∑
i=1

Pr[X = i|Y1 = H,Y2 = H]Pr[Y3 = H|X = i,Y1 = H,Y2 = H]

=
n

∑
i=1

Pr[X = i|Y1 = H,Y2 = H]Pr[Y3 = H|X = i]

=
∑

n
i=1 p3

i

∑
n
i=1 p2

i
.

Again, it can be shown that ∑
n
i=1 p3

i
∑

n
i=1 p2

i
≥ ∑

n
i=1 p2

i
∑

n
i=1 pi

, so the probability of seeing another Heads on the next flip has
again increased. If we continue this process further (conditioning on having seen more and more Heads),
the probability of Heads on the next flip will keep increasing towards the limit pmax = max(p1, . . . , pn).

As a numerical illustration, suppose n = 3 and the three coins have Heads probabilities p1 = 2/3, p2 = 1/2,
p3 = 1/5. The conditional distributions of X after observing no flip, one Heads and two Heads in a row
are shown in Figure 2. Note that as more Heads are observed, the conditional distribution is increasingly
concentrated on coin 1 with p1 = 2/3: we are increasingly certain that the coin chosen is the best coin. The
corresponding probabilities of winning on the next flip after observing no flip, one Heads and two Heads
in a row are 0.46, 0.54, and 0.58 respectively. The conditional probability of winning gets better and better
(approaching 2/3 in the limit).
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Iterative Update

A potential criticism of the method outline above is that it does not allow us to re-use past calculations, when
we make a new observation. Suppose that we’ve observed that the first two coin tosses came up Heads, and
calculated the conditional distribution on X given those observations. Now we observe the third coin toss
is Heads, and want to update the distribution of X . It would be nice if we could re-use our past work. The
method described in the past few pages has us start over from scratch; here is an alternative approach which
allows us to update the distribution more efficiently.

Let’s work with a simple, concrete example: say we have there are two possibilities for the Heads probability
of the coin we select, p1 = 3/4 or p2 = 1/2. Previously, we assumed that the prior distribution on X was
uniform, but let’s remove that assumption and allow an arbitrary prior:

Pr[X = 1] = q, Pr[X = 2] = 1−q.

Now suppose that we toss this coin and observe it to come up Heads. We can calculate the posterior
distribution Pr[X = i|Y1 = H]:

Pr[Y1 = H] = ∑
j

Pr[Y1 = H|X = j]Pr[X = j] =
3
4

q+
1
2
(1−q) =

1
4

q+
1
2
,

Pr[X = 1|Y1 = H] =
Pr[Y1 = H|X = 1]Pr[X = 1]

Pr[Y1 = H]
=

3
4 q

1
4 q+ 1

2

=
3q

q+2
,

Pr[X = 2|Y1 = H] =
Pr[Y1 = H|X = 2]Pr[X = 2]

Pr[Y1 = H]
=

1
2(1−q)
1
4 q+ 1

2

=
2−2q
q+2

.

So the distribution gets updated like this:

(q,1−q)y UpdateH

( 3q
q+2 ,

2−2q
q+2 )

For instance, if we had a uniform prior (both coins equally likely), after observing a single Heads the update
rule would compute the posterior distribution as

(1
2 ,

1
2)y UpdateH

(3
5 ,

2
5)

since UpdateH(
1
2 ,

1
2) = (3/2

5/2 ,
1

5/2) = (3
5 ,

2
5).

What if we toss the coin again, and see Heads again? Fortunately, the following procedure works. We treat
the posterior distribution as our new prior, and apply the update rule we calculated above to this prior. For
instance, if we saw a second Heads, we would compute the posterior like this:

(1
2 ,

1
2)y UpdateH

(3
5 ,

2
5)y UpdateH

( 9
13 ,

4
13)
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Figure 3: The system diagram for the communication problem.

since UpdateH(
3
5 ,

2
5) = ( 9/5

13/5 ,
4/5

13/5) = ( 9
13 ,

4
13). In other words, after tossing the coin twice and seeing two

Heads, there is a 9
13 probability that we’ve been flipping coin 1 (with 3/4 Heads probability), and a 4

13
probability that we’ve been flipping coin 2 (the fair coin).

It may be surprising that we can separate the computation into two individual update steps. However, it
can be proven that this always works, whenever the observations are conditionally independent given the
hidden variable1. Formally, UpdateHH(q,1− q) = UpdateH(UpdateH(q,1− q)). The ability to break the
calculation down into individual steps that update the distribution as each observation arrives is known as
recursive Bayesian estimation2.

In many practical applications, this is an important optimization, because it means we don’t need to retain
a history of all past observations: we can simply keep track of the current distribution (conditioned upon
all the observations we’ve seen so far) and update the distribution whenever we make a new observation.
Also, the incremental approach can be computationally more efficient, since we do only a constant amount
of computation per observation.

Inference Example 2: Communication over a Noisy Channel
Question: I have one bit of information that I want to communicate over a noisy channel. The noisy channel
flips each one of my transmitted symbols independently with probability p < 0.5. How much improvement
in reliability do I get by repeating my transmission n times?

Comment: In an earlier lecture note, we also considered a communication problem and gave some examples
of error-correcting codes. However, the models for the communication channel are different. There, we put
a bound on the maximum number of flips (errors) the channel can make. Here, we do not put such bounds a
priori but instead impose a bound on the probability that each bit is flipped (so that the expected number of
bits flipped is np). Since there is no bound on the maximum number of flips the channel can make, there is
no guarantee that the receiver will always decode correctly. Instead, one has to be satisfied with being able
to decode correctly with high probability, e.g., probability of error < 0.01.

1In this specific example, we can do a simple sanity check on the answer we obtained this way. Note that Pr[Y1 = H] =

(3/4+1/2)/2= 5/8 and Pr[Y1 =H,Y2 =H] = ((3/4)2+(1/2)2)/2= 13/32. Therefore, Pr[X = 1|Y1 =H,Y2 =H] =
(3/4)2/2

13/32 = 9
13

and Pr[X = 2|Y1 = H,Y2 = H] =
(1/2)2/2

13/32 = 4
13 , which matches what we calculated using two update steps.

2“Iterative Bayesian estimation” might be just as good a name, but for whatever reason, “recursive Bayesian estimation” is the
standard term, despite the lack of any fundamental reliance upon recursion.
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Modeling

The situation is shown in Figure 3.

Let X (= 0 or 1) be the value of the information bit I want to transmit. Assume that X is equally likely to be
0 or 1 (this is the prior distribution). The received symbol on the ith repetition of X is

Yi = X +Zi mod 2, i = 1,2, . . . ,n

with Zi = 1 with probability p and Zi = 0 with probability 1− p. Note that Yi is different from X if and only
if Zi = 1. Thus, the transmitted symbol is flipped with probability p. The Zi’s are assumed to be mutually
independent across different repetitions of X and also independent of X . The Zi’s can be interpreted as noise.

Note that the received symbols Yi’s are not independent; they all contain information about the transmitted
bit X . However, given X , they are (conditionally) independent since they then only depend on the noise Zi.

Decision Rule

First, we have to figure out what decision rule to use at the receiver, i.e., given each of the 2n possible
received sequences, Y1 = b1,Y2 = b2, . . . ,Yn = bn, how should the receiver guess what value of X was trans-
mitted?

A natural rule is the maximum a posteriori (MAP) rule: guess the value a∗ for which the conditional proba-
bility of X = a∗ given the observations is the largest among all a. More explicitly:

a∗ =

{
0 if Pr[X = 0|Y1 = b1, . . . ,Yn = bn]≥ Pr[X = 1|Y1 = b1, . . .Yn = bn]

1 otherwise.

Now, let’s reformulate this rule so that it looks cleaner. By Bayes’ rule, we have

Pr[X = 0|Y1 = b1, . . . ,Yn = bn] =
Pr[X = 0]Pr[Y1 = b1, . . . ,Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(9)

=
Pr[X = 0]Pr[Y1 = b1|X = 0]Pr[Y2 = b2|X = 0] . . . ,Pr[Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(10)

In the second step, we are using the fact that the observations Yi’s are conditionally independent given X .
(Do you see why this is true?) Similarly,

Pr[X = 1|Y1 = b1, . . .Yn = bn] =
Pr[X = 1]Pr[Y1 = b1, . . . ,Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
(11)

=
Pr[X = 1]Pr[Y1 = b1|X = 1]Pr[Y2 = b2|X = 1] . . .Pr[Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
. (12)

An equivalent way of describing the MAP rule is that it computes the ratio of these conditional probabilities
and checks if it is greater than or less than 1. If it is greater than (or equal to) 1, then guess that a 0 was
transmitted; otherwise guess that a 1 was transmitted. (This ratio indicates how likely a 0 is compared
to a 1, and is called the likelihood ratio.) Dividing (10) and (12), and recalling that we are assuming
Pr[X = 1] = Pr[X = 0], the likelihood ratio L is:

L =
n

∏
i=1

Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

. (13)
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Note that we didn’t have to compute Pr[Y1 = b1, . . . ,Yn = bn], since it appears in both of the conditional
probabilities and got canceled out when computing the ratio.

Now,
Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

=

{
p

1−p if bi = 1
1−p

p if bi = 0.

Therefore, if n0 counts the number of 0’s received and n1 the number of 1’s received, we have

L =

(
1− p

p

)n0
(

p
1− p

)n1

=

(
1− p

p

)n0−n1

.

In other words, L has a factor of p/(1− p) for every 1 received and a factor of (1− p)/p for every 0 received.
The former factor is < 1; the latter factor is > 1. So the likelihood ratio L is greater than 1 if and only if the
number of 0’s is greater than the number of 1’s. Thus, the decision rule is simply a majority rule: guess that
a 0 was transmitted if the number of 0’s in the received sequence is at least as large as the number of 1’s,
otherwise guess that a 1 was transmitted.

Note that in deriving this rule, we assumed that the prior distribution on X is uniform, i.e., Pr[X = 0] =
Pr[X = 1] = 0.5. When the prior distribution on X is not uniform, the MAP rule is no longer a simple
majority rule. It is a good exercise to derive the MAP rule in the general case.

Error Probability Analysis

What is the probability that the guess is incorrect? This is just the event E that the number of flips by the
noisy channel is greater than n/2. So the error probability of our majority rule is:

Pr[E] = Pr
[ n

∑
i=1

Zi >
n
2

]
=

n

∑
k=dn/2e

(
n
k

)
pk(1− p)n−k,

recognizing that the random variable S := ∑
n
i=1 Zi has a binomial distribution with parameters n and p.

This gives an expression for the probability that the bit is received incorrectly. This probability can be
numerically evaluated for given values of n. Given a target error probability of, say, 0.01, one can then
compute the smallest number of repetitions needed to achieve the target error probability.3

However, the formula above does not give us much intuition about how the error probability varies as a
function of n. As in the hashing application we looked at earlier in the course, we are interested in a more
explicit relationship between n and the error probability to get a better intuition for the problem. The above
expression is too cumbersome for this purpose. Instead, notice that n/2 is greater than the mean np of S
and hence the error event is related to the tail of the distribution of S. One can therefore apply Chebyshev’s
inequality to bound the error probability:

Pr[S >
n
2
]≤ Pr[|S−np|> n(

1
2
− p)]≤ Var(S)

n2(1
2 − p)2

=
p(1− p)
(1

2 − p)2
· 1

n
.

The important thing to note is that the error probability decreases with n, so indeed by repeating more times
the performance improves (as one would expect!). For a given target error probability of, say, 0.01, one
needs to repeat no more than

100 ·
(1

2 − p)2

p(1− p)

3Needless to say, one does not want to repeat more times than is necessary, as the more bits you send, the longer it takes, so
repeating more than necessary will cause unnecessary slowdowns in communication.
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times. For p = 0.25, this evaluates to 300 repetitions.

It is possible to compare the bound above with the actual error probability. If you do so, you will see that
the bound above is rather pessimistic, and actually one can achieve an error probability of 0.01 with many
fewer repetitions. In an upper-division course such as CS 174 or EE 126, you can learn about much better
bounds on error probabilities like this.
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CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil Note 18

A Brief Introduction to Continuous Probability
Up to now we have focused exclusively on discrete probability spaces Ω, where the number of sample points
ω ∈Ω is either finite or countably infinite (such as the integers). As a consequence we have only been able
to talk about discrete random variables, which take on only a finite (or countably infinite) number of values.

But in real life many quantities that we wish to model probabilistically are continuous-valued; examples
include the position of a particle in a box, the time at which a certain incident happens, or the direction of
travel of a meteorite. In this lecture, we discuss how to extend the concepts we’ve seen in the discrete setting
to this continuous setting. As we shall see, everything translates in a natural way once we have set up the
right framework. The framework involves some elementary calculus.

Continuous uniform probability spaces
Suppose we spin a “wheel of fortune” and record the position of the pointer on the outer circumference of
the wheel. Assuming that the circumference is of length ` and that the wheel is unbiased, the position is
presumably equally likely to take on any value in the real interval [0, `]. How do we model this experiment
using a probability space?

Consider for a moment the (almost) analogous discrete setting, where the pointer can stop only at a finite
number m of positions distributed evenly around the wheel. (If m is very large, then presumably this is in
some sense similar to the continuous setting.) Then we would model this situation using the discrete sample
space Ω = {0, `

m ,
2`
m , . . . , (m−1)`

m }, with uniform probabilities Pr[ω] = 1
m for each ω ∈ Ω. In the continuous

world, however, we get into trouble if we try the same approach. If we let ω range over all real numbers
in [0, `], what value should we assign to each Pr[ω]? By uniformity this probability should be the same for
all ω , but then if we assign to it any positive value, the sum of all probabilities Pr[ω] for ω ∈ Ω will be ∞!
Thus Pr[ω] must be zero for all ω ∈ Ω. But if all of our sample points have probability zero, then we are
unable to assign meaningful probabilities to any events!

To rescue this situation, consider instead any non-empty interval [a,b] ⊆ [0, `]. Can we assign a non-zero
probability value to this interval? Since the total probability assigned to [0, `] must be 1, and since we want
our probability to be uniform, the natural assignment of probability to the interval [a,b] is

Pr[[a,b]] =
length of [a,b]
length of [0, `]

=
b−a
`

. (1)

In other words, the probability of an interval is proportional to its length.

Note that intervals are subsets of the sample space Ω and are therefore events. So in continuous probability,
we are assigning probabilities to certain basic events, in contrast to discrete probability, where we assigned
probability to points in the sample space. But what about probabilities of other events? Actually, by speci-
fying the probability of intervals we have also specified the probability of any event E which can be written
as the disjoint union of (a finite or countably infinite number of) intervals, E = ∪iEi. For then we can write
Pr[E] = ∑i Pr[Ei], in analogous fashion to the discrete case. Thus for example the probability that the pointer
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Figure 1: The event E as a subset of the sample space Ω.

ends up in the first or third quadrants of the wheel is `/4
` + `/4

` = 1
2 . For all practical purposes, such events

are all we really need.1

An example: Buffon’s needle
Here is a simple application of continuous probability to the analysis of a classical procedure for estimating
the value of π known as Buffon’s needle, after its 18th century inventor Georges-Louis Leclerc, Comte de
Buffon.

Here we are given a needle of length `, and a board ruled with horizontal lines at distance ` apart. The
experiment consists of throwing the needle randomly onto the board and observing whether or not it crosses
one of the lines. We shall see below that (assuming a perfectly random throw) the probability of this event is
exactly 2/π . This means that, if we perform the experiment many times and record the proportion of throws
on which the needle crosses a line, then the Law of Large Numbers (Lecture Note 16) tells us that we will
get a good estimate of the quantity 2/π , and therefore also of π; and we can use Chebyshev’s inequality as
in the other estimation problems we considered in that same Lecture Note to determine how many throws
we need in order to achieve specified accuracy and confidence.

To analyze the experiment, we first need to specify the probability space. Note that the position where the
needle lands is completely specified by two numbers: the vertical distance y between the midpoint of the
needle and the closest horizontal line, and the angle θ between the needle and the vertical. The vertical
distance y ranges between 0 and `/2, while θ ranges between −π/2 and π/2. Thus, the sample space is
the rectangle Ω = [−π/2,π/2]× [0, `/2]. Note that, compared to the wheel-of-fortune example, the sample
space is two-dimensional rather than one-dimensional. But like the wheel-of-fortune example, the sample
space is also continuous.

Now let E denote the event that the needle crosses a line. It is a subset of the sample space Ω. We need to
identify this subset explicitly. By elementary geometry the vertical distance of the endpoint of the needle
from its midpoint is `

2 cosθ , so the needle will cross the line if and only if y ≤ `
2 cosθ . The event E is

sketched in Figure 1.

Since we are assuming a completely random throw, probability of the event E is:

Pr[E] =
area of E
area of Ω

.

1A formal treatment of which events can be assigned a well-defined probability requires a discussion of measure theory, which
is beyond the scope of this course.
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This is the two-dimensional generalization of equation (1) in the wheel-of-fortune example, where the prob-
ability of landing in an interval is proportional to the length of the interval.

The area of the whole sample space is π`/2. The area of E is:∫
π/2

−π/2

`

2
cosθ dθ =

[
`

2
sinθ

]π/2

−π/2
= `.

Hence,

Pr[E] =
`

π`/2
=

2
π
.

This is exactly what we claimed at the beginning of the section!

Continuous random variables
Recall that in the discrete setting we typically work with random variables and their distributions, rather
than directly with probability spaces and events. This is even more so in continuous probability, since
numerical quantities are almost always involved. In the wheel-of-fortune example, the position X of the
pointer is a random variable. In the Buffon needle example, the vertical distance Y and the angle Θ are
random variables. In fact, they are all continuous random variables. These random variables are all relatively
simple, in the sense that they are all uniformly distributed on the range of values they can take on. (Because
of this simplicity, we didn’t even need to worry about the random variables explicitly when calculating
probabilities in these examples, and instead reason directly with the sample space.) But more complicated
random variables do not have a uniform distribution. How, precisely, should we define the distribution
of a general continuous random variable? In the discrete case the distribution of a r.v. X is described by
specifying, for each possible value a, the probability Pr[X = a]. But for the r.v. X corresponding to the
position of the pointer, we have Pr[X = a] = 0 for every a, so we run into the same problem as we encountered
above in defining the probability space.

The resolution is essentially the same: instead of specifying Pr[X = a], we instead specify Pr[a < X ≤ b] for
all intervals [a,b].2 To do this formally, we need to introduce the concept of a probability density function
(sometimes referred to just as a “density”, or a “pdf”).

Definition 18.1 (Density): A probability density function for a random variable X is a function f : R→ R
satisfying

Pr[a < X ≤ b] =
∫ b

a
f (x)dx for all a≤ b. (2)

Let’s examine this definition. Note that the definite integral is just the area under the curve f between the
values a and b (Figure 2(a)). Thus f plays a similar role to the “histogram” we sometimes draw to picture
the distribution of a discrete random variable.

In order for the definition to make sense, f must obey certain properties. Some of these are technical in
nature, which basically just ensure that the integral is always well defined; we shall not dwell on this issue
here since all the densities that we will meet will be well behaved. What about some more basic properties
of f ? First, it must be the case that f is a non-negative function; for if f took on negative values we could
find an interval in which the integral is negative, so we would have a negative probability for some event!
Second, since the r.v. X must take on some value everywhere in the space, we must have∫

∞

−∞

f (x)dx = Pr[−∞ < X < ∞] = 1. (3)

2Note that it does not matter whether or not we include the endpoints a,b; since Pr[X = a] = Pr[X = b] = 0, we have Pr[a < X <
b] = Pr[a < X ≤ b] = Pr[a < X < b].
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Figure 2: (a) The area under the density curve between a and b is the probability that the random variable
lies in that range. (b) For small δ , the area under the curve between x and x+ δ can be well approximated
by the area of the rectangle of height f (x) and width δ .

In other words, the total area under the curve f must be 1.

A caveat is in order here. Following the “histogram” analogy above, it is tempting to think of f (x) as a
“probability.” However, f (x) doesn’t itself correspond to the probability of anything! For one thing, there
is no requirement that f (x) be bounded by 1 (and indeed, we shall see examples of densities in which f (x)
is greater than 1 for some x). To connect f (x) with probabilities, we need to look at a very small interval
[x,x+δ ] close to x. Assuming that the interval [x,x+δ ] is so small that the function f doesn’t change much
over that interval. we have

Pr[x < X ≤ x+δ ] =
∫ x+δ

x
f (z)dz≈ δ f (x). (4)

This approximation is illustrated in Figure 2(b). Equivalently,

f (x)≈ Pr[x < X ≤ x+δ ]

δ
. (5)

The approximation in (5) becomes more accurate as δ becomes small. Hence, more formally, we can relate
density and probability by taking limits:

f (x) = lim
δ→0

Pr[x < X ≤ x+δ ]

δ
. (6)

Thus we can interpret f (x) as the “probability per unit length” in the vicinity of x. Note that while the
equation (2) allows us to compute probabilities given the probability density function, the equation (6)
allows us to compute the probability density function given probabilities. Both relationships are useful in
problems.

Now let’s go back and put our wheel-of-fortune r.v. X into this framework. What should be the density
of X? Well, we want X to have non-zero probability only on the interval [0, `], so we should certainly have
f (x) = 0 for x < 0 and for x > `. Within the interval [0, `] we want the distribution of X to be uniform, which
means we should take f (x) = c for 0 ≤ x ≤ `. What should be the value of c? This is determined by the
requirement (3) that the total area under f is 1. The area under the above curve is

∫
∞

−∞
f (x)dx =

∫ `
0 cdx = c`,

so we must take c = 1
` . Summarizing, then, the density of the uniform distribution on [0, `] is given by

f (x) =


0 for x < 0;
1/` for 0≤ x≤ `;
0 for x > `.
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Figure 3: The density function of the wheel-of-fortune r.v. X .

This is plotted in Figure 3. Note that f (x) can certainly be greater than 1, depending on the value of `.

Another Example: Suppose you throw a dart and it lands uniformly at random on a target which is a disk
of unit radius. What is the probability density function of the distance of the dart from the center of the disk?

Let X be the distance of the dart from the center of the disk. We first calculate the probability that X is
between x and x+ δ . If x is negative or greater than or equal to 1, this probability is zero, so we focus on
the case that x is between 0 and 1. The event in question is that the dart lands in the ring (annulus) shown in
Figure 4. Since the dart lands uniformly at random on the disk, the probability of the event is just the ratio
of the area of the ring and the area of the disk. Hence,

Pr[x < X ≤ x+δ ] =
π[(x+δ )2− x2]

π(1)2 (7)

= x2 +2δx+δ
2− x2 = 2δx−δ

2.

Using equation (6), we can now compute the probability density function of X :

f (x) = lim
δ→0

Pr[x < X ≤ x+δ ]

δ
= f (x) = lim

δ→0

2δx−δ 2

δ
= 2x.

Summarizing, we have

f (x) =


0 for x≤ 0;
2x for 0≤ x < 1;
0 for x≥ 1.

It is plotted in Figure 5(a). Note that although the dart lands uniformly inside the target, the distance X from
the center is not uniformly distributed in the range from 0 to 1. This is because an ring farther away from
the center has a larger area than an ring closer to the center with the same width δ . Hence the probability of
landing in the ring farther away from the center is larger.
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Figure 4: The sample space is the disk of unit radius. The event of interest is the ring.

Figure 5: (a) The probability density function and (b) the cumulative distribution function of the distance X
from the target center.
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Cumulative Distribution Function
Let us re-interpret equation (7) in the dart throwing example above. In words, we are saying:

Pr[x < X ≤ x+δ ] =
area of ring

area of target

=
(area of disk of radius x+δ ) − (area of disk of radius x)

area of target

=
area of disk of radius x+δ

area of target
− area of disk of radius x

area of target
= Pr[X ≤ x+δ ]−Pr[X ≤ x].

This last equality can be understood directly as follows. The event A that X ≤ x+δ (dart lands inside disk
of radius x+ δ ) can be decomposed as a union of two events: 1) the event B that X ≤ x (dart lands inside
disk of radius x), and 2) the event C that x < X ≤ x+δ (dart lands inside ring). The two events are disjoint.
(See Figure 4.) Hence,

Pr[A] = Pr[B]+Pr[C]

or
Pr[x < X ≤ x+δ ] = Pr[X ≤ x+δ ]−Pr[X ≤ x], (8)

which is exactly the same as above.

Clearly, the reasoning leading to (8) has nothing much to do the particulars of this example but in fact (8)
holds true for any random variable X . All we needed are the facts that A = B∪C and B and C are disjoint
events, and the facts are true in general.

Substituting (8) into (6), we obtain:

f (x) = lim
δ→0

Pr[X ≤ x+δ ]−Pr[X ≤ x]
δ

.

What does this equation remind you of? To make things even more explicit, let us define the function

F(x) = Pr[X ≤ x]. (9)

Then we have:

f (x) = lim
δ→0

F(x+δ )−F(x)
δ

=
d
dx

F(x). (10)

This equation provides an alternative way of solving the dart throwing example by first computing the
function F and then differentiating F to get the probability density function. This way, we can avoid taking
limits. In that example, F is given by (please check!):

F(x) =


0 for x≤ 0;
x2 for 0≤ x < 1;
1 for x≥ 1.

This function is plotted in Figure 5(b).

The function F has a name: it is called the cumulative distribution function of the random variable X
(sometimes abbreviated as cdf). It is called “cumulative” because at each value x, F(x) is the cumulative
probability up to x. Note that the cumulative distribution function and the probability density function of a
random variable contains exactly the same information. Given the cumulative distribution function F , one
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can differentiate to get the probability density function f . Given the probability density function f , one can
integrate to get the cumulative distribution function:

F(x) =
∫ x

−∞

f (a)da.

So strictly speaking, one does not need to introduce the concept of cumulative distribution function at all.
However, for many problems, the cumulative distribution function is easier to compute first and from that
one can then compute the probability density function.

Summarizing, we have:

Definition 18.2 (Cumulative Distribution Function): The cumulative distribution function for a random
variable X is a function F : R→ R defined to be:

F(x) = Pr[X ≤ x]. (11)

Its relationship with the probability density function f of X is given by

f (x) =
d
dx

F(x), F(x) =
∫ x

−∞

f (a)da.

Expectation and variance of a continuous random variable
By analogy with the discrete case, we define the expectation of a continuous r.v. as follows:

Definition 18.3 (Expectation): The expectation of a continuous random variable X with probability density
function f is

E(X) =
∫

∞

−∞

x f (x)dx.

Note that the integral plays the role of the summation in the discrete formula E(X) = ∑a aPr[X = a].

Example: Let X be a uniform r.v. on the interval [0, `]. Then

E(X) =
∫ `

0
x

1
`

dx =
[

x2

2`

]`
0
=

`

2
.

This is certainly what we would expect!

Example: Consider the dart-throwing example again. The expectation of the distance X of the dart from
the origin is

E(X) =
∫ 1

0
x ·2xdx =

[
2
3

x3
]1

0
=

2
3
.

Note that the expected distance is greater than 1
2 .

We will see more examples of expectations of continuous r.v.’s in the next section.

Since variance is really just another expectation, we can immediately port its definition to the continuous
setting as well:

Definition 18.4 (Variance): The variance of a continuous random variable X with probability density
function f is

Var(X) = E((X−E(X))2) = E(X2)−E(X)2 =
∫

∞

−∞

x2 f (x)dx −
(∫

∞

−∞

x f (x)dx
)2

.
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Example: Let’s calculate the variance of the uniform r.v. X on the interval [0, `]. From the above definition,
and plugging in our previous value for E(X), we get

Var(X) =
∫ `

0
x2 1

`
dx−E(X)2 =

[
x3

3`

]`
0
−
(
`

2

)2

=
`2

3
− `2

4
=

`2

12
.

The factor of 1
12 here is not particularly intuitive, but the fact that the variance is proportional to `2 should

come as no surprise. Like its discrete counterpart, this distribution has large variance.

Two more important continuous distributions
We have already seen one important continuous distribution, namely the uniform distribution. In this section
we will see two more: the exponential distribution and the normal (or Gaussian) distribution. These three
distributions cover the vast majority of continuous random variables arising in applications.

Exponential distribution: The exponential distribution is a continuous version of the geometric distribu-
tion, which we have already met. Recall that the geometric distribution describes the number of tosses of a
coin until the first Head appears; the distribution has a single parameter p, which is the bias (Heads proba-
bility) of the coin. Of course, in real life applications we are usually not waiting for a coin to come up Heads
but rather waiting for a system to fail, a clock to ring, an experiment to succeed etc.

In such applications we are frequently not dealing with discrete events or discrete time, but rather with
continuous time: for example, if we are waiting for an apple to fall off a tree, it can do so at any time at
all, not necessarily on the tick of a discrete clock. This situation is naturally modeled by the exponential
distribution, defined as follows:

Definition 18.5 (Exponential distribution): For any λ > 0, a continuous random variable X with pdf f
given by

f (x) =

{
λe−λx if x≥ 0;
0 otherwise.

is called an exponential random variable with parameter λ .

Like the geometric, the exponential distribution has a single parameter λ , which characterizes the rate at
which events happen. We shall illuminate the connection between the geometric and exponential distribu-
tions in a moment.

First, let’s do some basic computations with the exponential distribution. We should check first that it is a
valid distribution, i.e., that it satisfies (3):∫

∞

−∞

f (x)dx =
∫

∞

0
λe−λxdx =

[
−e−λx]∞

0 = 1,

as required. Next, what is its expectation? We have

E(X) =
∫

∞

−∞

x f (x)dx =
∫

∞

0
λxe−λxdx =

[
−xe−λx]∞

0 +
∫

∞

0
e−λxdx = 0+

[
−e−λx

λ

]∞

0

=
1
λ
,

where for the first integral we used integration by parts.

To compute the variance, we need to evaluate

E(X2) =
∫

∞

−∞

x2 f (x)dx =
∫

∞

0
λx2e−λxdx =

[
−x2e−λx]∞

0 +
∫

∞

0
2xe−λxdx = 0+

2
λ
E(X) =

2
λ 2 ,
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where again we used integration by parts. The variance is therefore

Var(X) = E(X2)−E(X)2 =
2

λ 2 −
1

λ 2 =
1

λ 2 .

Let us now explore the connection with the geometric distribution. Note first that the exponential distribution
satisfies, for any t ≥ 0,

Pr[X > t] =
∫

∞

t
λe−λxdx =

[
−e−λx]∞

t = e−λ t . (12)

In other words, the probability that we have to wait more than time t for our event to happen is e−λ t , which
is an exponential decay with rate λ .

Now consider a discrete-time setting in which we perform one trial every δ seconds (where δ is very small—
in fact, we will take δ→ 0 to make time “continuous”), and where our success probability is p= λδ . Making
the success probability proportional to δ makes sense, as it corresponds to the natural assumption that there
is a fixed rate of success per unit time, which we denote by λ = p/δ . The number of trials until we get a
success has the geometric distribution with parameter p, so if we let the r.v. Y denote the time (in seconds)
until we get a success we have

Pr[Y > kδ ] = (1− p)k = (1−λδ )k for any k ≥ 0.

Hence, for any t > 0, we have

Pr[Y > t] = Pr[Y > ( t
δ
)δ ] = (1−λδ )t/δ ≈ e−λ t ,

where this final approximation holds in the limit as δ → 0 with λ = p/δ fixed. (We are ignoring the detail
of rounding t

δ
to an integer since we are taking an approximation anyway.)

Comparing this expression with (12) we see that this distribution has the same form as the exponential
distribution with parameter λ , where λ (the success rate per unit time) plays an analogous role to p (the
probability of success on each trial)—though note that λ is not constrained to be ≤ 1. Thus we may view
the exponential distribution as a continuous time analog of the geometric distribution.

Normal Distribution: The last continuous distribution we will look at, and by far the most prevalent in
applications, is called the normal or Gaussian distribution. It has two parameters, µ and σ .

Definition 18.6 (Normal distribution): For any µ and σ > 0, a continuous random variable X with pdf f
given by

f (x) =
1√

2πσ2
e−(x−µ)2/2σ2

is called a normal random variable with parameters µ and σ . In the special case µ = 0 and σ = 1, X is said
to have the standard normal distribution.

A plot of the pdf f reveals a classical “bell-shaped” curve, centered at (and symmetric around) x = µ , and
with “width” determined by σ . (The precise meaning of this latter statement will become clear when we
discuss the variance below.)

Let’s run through the usual calculations for this distribution. First, let’s check equation (3):∫
∞

−∞

f (x)dx =
1√

2πσ2

∫
∞

−∞

e−(x−µ)2/2σ2
dx = 1. (13)

The fact that this integral evaluates to 1 is a routine exercise in integral calculus, and is left as an exercise
(or feel free to look it up in any standard book on probability or on the internet).
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What are the expectation and variance of a normal r.v. X? Let’s consider first the standard normal. By
definition, its expectation is

E(X) =
∫

∞

−∞

x f (x)dx =
1√
2π

∫
∞

−∞

xe−x2/2dx =
1√
2π

(∫ 0

−∞

xe−x2/2dx+
∫

∞

0
xe−x2/2dx

)
= 0.

The last step follows from the fact that the function e−x2/2 is symmetrical about x = 0, so the two integrals
are the same except for the sign. For the variance, we have

Var(X) = E(X2)−E(X)2 =
1√
2π

∫
∞

−∞

x2e−x2/2dx

=
1√
2π

[
−xe−x2/2]∞

−∞
+

1√
2π

∫
∞

−∞

e−x2/2dx

= 0+
1√
2π

∫
∞

−∞

e−x2/2dx = 1.

In the first line here we used the fact that E(X) = 0; in the second line we used integration by parts; and in the
last line we used (13) in the special case µ = 0, σ = 1. So the standard normal distribution has expectation
E(X) = 0 = µ and variance Var(X) = 1 = σ2.

Now suppose X has normal distribution with general parameters µ,σ . We claim that the r.v. Y = X−µ

σ
has

the standard normal distribution. To see this, note that

Pr[a≤ Y ≤ b] = Pr[σa+µ ≤ X ≤ σb+µ] =
1√

2πσ2

∫
σb+µ

σa+µ

e−(x−µ)2/2σ2
dx =

1√
2π

∫ b

a
e−y2/2dy,

by a simple change of variable in the integral. Hence Y is indeed standard normal. Note that Y is obtained
from X just by shifting the origin to µ and scaling by σ . (And we shall see in a moment that µ is the mean
and σ the standard deviation, so this operation is very natural.)

Now we can read off the expectation and variance of X from those of Y . For the expectation, using linearity,
we have

0 = E(Y ) = E
(

X−µ

σ

)
=

E(X)−µ

σ
,

and hence E(X) = µ . For the variance we have

1 = Var(Y ) = Var
(

X−µ

σ

)
=

Var(X)

σ2 ,

and hence Var(X) = σ2.

The bottom line, then, is that the normal distribution has expectation µ and variance σ2. (This explains the
notation for the parameters µ , σ .)

The fact that the variance is σ2 (so that the standard deviation is σ ) explains our earlier comment that σ

determines the “width” of the normal distribution. Namely, by Chebyshev’s inequality, a constant fraction
of the distribution lies within distance (say) 2σ of the expectation µ .

Note: The above analysis shows that, by means of a simple origin shift and scaling, we can relate any normal
distribution to the standard normal. This means that, when doing computations with normal distributions,
it’s enough to do them for the standard normal. For this reason, books and online sources of mathematical
formulas usually contain tables describing the density of the standard normal. From this, one can read off
the corresponding information for any normal r.v. X with parameters µ,σ2, from the formula

Pr[X ≤ a] = Pr[Y ≤ a−µ

σ
],
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where Y is standard normal.

Some basic facts that are useful to know, when dealing with a normal distribution:

• A normally distributed r.v. falls within ±σ of the mean about 68% of the time.
(i.e., Pr[µ−σ ≤ X ≤ µ +σ ]≈ 0.68)

• A normally distributed r.v. falls within ±2σ of the mean about 95% of the time.
(i.e., Pr[µ−2σ ≤ X ≤ µ +2σ ]≈ 0.95)

• A normally distributed r.v. falls within ±3σ of the mean about 99.7% of the time.
(i.e., Pr[µ−3σ ≤ X ≤ µ +3σ ]≈ 0.997)

The normal distribution is ubiquitous throughout the sciences and the social sciences, because it is the
standard model for any aggregate data that results from a large number of independent observations of the
same random variable (such as the heights of females in the US population, or the observational error in a
physical experiment). Such data, as is well known, tends to cluster around its mean in a “bell-shaped” curve,
with the correspondence becoming more accurate as the number of observations increases. A theoretical
explanation of this phenomenon is the Central Limit Theorem, which we next discuss.

The Central Limit Theorem
Recall from Lecture Note 16 the Law of Large Numbers for i.i.d. r.v.’s Xi’s: it says that the probability of
any deviation α of the sample average An := 1

n ∑
n
i=1 Xi from the mean, however small, tends to zero as the

number of observations n in our average tends to infinity. Thus by taking n large enough, we can make the
probability of any given deviation as small as we like.

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution of
the sample average An, for large enough n, looks like a normal distribution with mean µ and variance σ2

n .
(Of course, we already know that these are the mean and variance of An; the point is that the distribution
becomes normal!) The fact that the standard deviation decreases with n (specifically, as σ√

n ) means that the
distribution approaches a sharp spike at µ .

Recall from the last section that the density of the normal distribution is a symmetrical bell-shaped curve
centered around the mean µ . Its height and width are determined by the standard deviation σ as follows: the
height at the mean is about 0.4/σ ; 50% of the mass is contained in the interval of width 0.67σ either side of
the mean, and 99.7% in the interval of width 3σ either side of the mean. (Note that, to get the correct scale,
deviations are on the order of σ rather than σ2.)

To state the Central Limit Theorem precisely (so that the limiting distribution is a constant rather than
something that depends on n), we shift the mean of An to 0 and scale it so that its variance is 1, i.e., we
replace An by

A′n =
(An−µ)

√
n

σ
=

∑
n
i=1 Xi−nµ

σ
√

n
.

The Central Limit Theorem then says that the distribution of A′n converges to the standard normal distribu-
tion.

Theorem 18.1: [Central Limit Theorem] Let X1,X2, . . . ,Xn be i.i.d. random variables with common ex-
pectation µ = E(Xi) and variance σ2 = Var(Xi) (both assumed to be < ∞). Define A′n =

∑
n
i=1 Xi−nµ

σ
√

n . Then as
n→ ∞, the distribution of A′n approaches the standard normal distribution in the sense that, for any real α ,

Pr[A′n ≤ α]→ 1√
2π

∫
α

−∞

e−x2/2dx as n→ ∞.
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The Central Limit Theorem is a very striking fact. What it says is the following. If we take an average of
n observations of absolutely any r.v. X , then the distribution of that average will be approximately a bell-
shaped curve centered at µ = E(X). Thus all trace of the distribution of X disappears as n gets large: all
distributions, no matter how complex,3 look like the normal distribution when they are averaged. The only
effect of the original distribution is through the variance σ2, which determines the width of the curve for a
given value of n, and hence the rate at which the curve shrinks to a spike.

3We do need to assume that the mean and variance of X are finite.
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Infinity and Countability
Bijections
Consider a function (or mapping) f that maps elements of a set A (called the domain of f ) to elements of set
B (called the range of f ). For each element x∈ A (“input”), f must specify one element f (x)∈ B (“output”).
Recall that we write this as f : A→ B. We say that f is a bijection if every element a ∈ A has a unique image
b = f (a) ∈ B, and every element b ∈ B has a unique pre-image a ∈ A such that f (a) = b.

f is a one-to-one function (or an injection) if f maps distinct inputs to distinct outputs. More rigorously, f
is one-to-one if the following holds: ∀x,y . x 6= y⇒ f (x) 6= f (y).

The next property we are interested in is functions that are onto (or surjective). A function that is onto
essentially “hits” every element in the range (i.e., each element in the range has at least one pre-image).
More precisely, a function f is onto if the following holds: ∀y ∃x . f (x) = y. Here are some examples to
help visualize one-to-one and onto functions:

One-to-one Onto

Note that according to our definition a function is a bijection iff it is both one-to-one and onto.

Cardinality
How can we determine whether two sets have the same cardinality (or “size”)? The answer to this question,
reassuringly, lies in early grade school memories: by demonstrating a pairing between elements of the two
sets. More formally, we need to demonstrate a bijection f between the two sets. The bijection sets up a
one-to-one correspondence, or pairing, between elements of the two sets. We know how this works for finite
sets. In this lecture, we will see what it tells us about infinite sets.

Are there more natural numbers N than there are positive integers Z+? It is tempting to answer yes, since
every positive integer is also a natural number, but the natural numbers have one extra element 0, which
is not an element of Z+. Upon more careful observation, though, we see that we can generate a mapping
between the natural numbers and the positive integers as follows:

N 0 1 2 3 4 5 . . .

↓ ↘ ↘ ↘ ↘ ↘ ↘
Z+ 1 2 3 4 5 6 . . .
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Why is this mapping a bijection? Clearly, the function f : N→ Z+ is onto because every positive integer
is hit. And it is also one-to-one because no two natural numbers have the same image. (The image of n is
f (n) = n+1, so if f (n) = f (m) then we must have n = m.) Since we have shown a bijection between N and
Z+, this tells us that there are as many natural numbers as there are positive integers! Informally, we have
proved that “∞+1 = ∞.”

What about the set of even natural numbers 2N= {0,2,4,6, ...}? In the previous example the difference was
just one element. But in this example, there seem to be twice as many natural numbers as there are even
natural numbers. Surely, the cardinality of N must be larger than that of 2N since N contains all of the odd
natural numbers as well. Though it might seem to be a more difficult task, let us attempt to find a bijection
between the two sets using the following mapping:

N 0 1 2 3 4 5 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓
2N 0 2 4 6 8 10 . . .

The mapping in this example is also a bijection. f is clearly one-to-one, since distinct natural numbers get
mapped to distinct even natural numbers (because f (n) = 2n). f is also onto, since every n in the range is
hit: its pre-image is n

2 . Since we have found a bijection between these two sets, this tells us that in fact N
and 2N have the same cardinality!

What about the set of all integers, Z? At first glance, it may seem obvious that the set of integers is larger
than the set of natural numbers, since it includes negative numbers. However, as it turns out, it is possible to
find a bijection between the two sets, meaning that the two sets have the same size! Consider the following
mapping:

0→ 0, 1→−1, 2→ 1, 3→−2, 4→ 2, . . . , 124→ 62, . . .

In other words, our function is defined as follows:

f (x) =

{
x
2 if x is even,
−(x+1)

2 if x is odd.

We will prove that this function f : N→ Z is a bijection, by first showing that it is one-to-one and then
showing that it is onto.

Proof (one-to-one): Suppose f (x) = f (y). Then they both must have the same sign. Therefore either
f (x) = x

2 and f (y) = y
2 , or f (x) = −(x+1)

2 and f (y) = −(y+1)
2 . In the first case, f (x) = f (y)⇒ x

2 = y
2 ⇒ x = y.

Hence x= y. In the second case, f (x)= f (y)⇒ −(x+1)
2 = −(y+1)

2 ⇒ x= y. In both cases f (x)= f (y)⇒ x= y,
so taking the contrapositive, f must be one-to-one.

Proof (onto): If y ∈ Z is non-negative, then f (2y) = y, and 2y≥ 0. Therefore, y has a pre-image in N. If y
is negative, then f (−(2y+1)) = y, and −(2y+1)≥ 0. Therefore, y has a pre-image in N. Thus every y ∈ Z
has a preimage, so f is onto.

Since f is a bijection, this tells us that N and Z have the same cardinality.

Now for an important definition. We say that a set S is countable if there is a bijection between S and N
or some subset of N. Thus any finite set S is countable (since there is a bijection between S and the subset
{0,1,2, . . . ,m−1}, where m = |S| is the size of S). And we have already seen three examples of countable
infinite sets: Z+ and 2N are obviously countable since they are themselves subsets of N; and Z is countable
because we have just seen a bijection between it and N.

What about the set of all rational numbers? Recall that Q = { x
y | x,y ∈ Z, y 6= 0}. Surely there are more
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rational numbers than natural numbers? After all, there are infinitely many rational numbers between any
two natural numbers. Surprisingly, the two sets have the same cardinality! To see this, let us introduce a
slightly different way of comparing the cardinality of two sets.

If there is a one-to-one function f : A→ B, then the cardinality of A is less than or equal to that of B. Now to
show that the cardinality of A and B are the same we can show that |A| ≤ |B| and |B| ≤ |A|. This corresponds
to showing that there is a one-to-one function f : A→ B and a one-to-one function g : B→ A. The existence
of these two one-to-one functions implies that there is a bijection h : A→ B, thus showing that A and B have
the same cardinality. The proof of this fact, which is called the Cantor-Bernstein theorem, is actually quite
hard, and we will skip it here.

Back to comparing the natural numbers and the rational numbers. First it is obvious that |N| ≤ |Q| because
N ⊆ Q. So our goal now is to prove that also |Q| ≤ |N|. To do this, we must exhibit a one-to-one function
f : Q→ N. The following picture of a spiral conveys the idea of this function:

Each rational number a
b (written in its lowest terms, so that gcd(a,b) = 1) is represented by the point (a,b)

in the infinite two-dimensional grid shown (which corresponds to Z×Z, the set of all pairs of integers).
Note that not all points on the grid are valid representations of rationals: e.g., all points on the x-axis have
b = 0 so none are valid (except for (0,0), which we take to represent the rational number 0); and points
such as (2,8) and (−1,−4) are not valid either as the rational number 1

4 is represented by (1,4). But Z×Z
certainly contains all rationals under this representation, so if we come up with an injection from Z×Z to N
then this will also be an injection from Q to N (why?).

The idea is to map each pair (a,b) to its position along the spiral, starting at the origin. (Thus, e.g., (0,0)→ 0,
(1,0)→ 1, (1,1)→ 2, (0,1)→ 3, and so on.) This mapping certainly maps every rational number to a
natural number, because every rational appears somewhere (exactly once) in the grid, and the spiral hits
every point in the grid. Why is this mapping an injection? Well, we just have to check that no two rational
numbers map to the same natural number. But that is true because no two pairs lie at the same position on
the spiral. (Note that the mapping is not onto because some positions along the spiral do not correspond to
valid representations of rationals; but that is fine.)

This tells us that |Q| ≤ |N|. Since also |N| ≤ |Q|, as we observed earlier, by the Cantor-Bernstein Theorem
N and Q have the same cardinality.

Our next example concerns the set of all binary strings (of any finite length), denoted {0,1}∗. Despite the
fact that this set contains strings of unbounded length, it turns out to have the same cardinality as N. To see
this, we set up a direct bijection f : {0,1}∗→ N as follows. Note that it suffices to enumerate the elements
of {0,1}∗ in such a way that each string appears exactly once in the list. We then get our bijection by setting
f (n) to be the nth string in the list. How do we enumerate the strings in {0,1}∗? Well, it’s natural to list them
in increasing order of length, and then (say) in lexicographic order (or, equivalently, numerically increasing
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order when viewed as binary numbers) within the strings of each length. This means that the list would look
like

ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,1000, . . . ,

where ε denotes the empty string (the only string of length 0). It should be clear that this list contains each
binary string once and only once, so we get a bijection with N as desired.

Our final countable example is the set of all polynomials with natural number coefficients, which we denote
N(x). To see that this set is countable, we will make use of (a variant of) the previous example. Note first
that, by essentially the same argument as for {0,1}∗, we can see that the set of all ternary strings {0,1,2}∗
(that is, strings over the alphabet {0,1,2}) is countable. To see that N(x) is countable, it therefore suffices to
exhibit an injection f : N(x)→{0,1,2}∗, which in turn will give an injection from N(x) to N. (It is obvious
that there exists an injection from N to N(x), since each natural number n is itself trivially a polynomial,
namely the constant polynomial n itself.)

How do we define f ? Let’s first consider an example, namely the polynomial p(x)= 5x5+2x4+7x3+4x+6.
We can list the coefficients of p(x) as follows: (5,2,7,0,4,6). We can then write these coefficients as binary
strings: (1012,102,1112,02,1002,1102). Now, we can construct a ternary string where a “2” is inserted as a
separator between each binary coefficient (ignoring coefficients that are 0). Thus we map p(x) to a ternary
string as illustrated below:

It is easy to check that this is an injection, since the original polynomial can be uniquely recovered from this
ternary string by simply reading off the coefficients between each successive pair of 2’s. (Notice that this
mapping f : N(x)→{0,1,2}∗ is not onto (and hence not a bijection) since many ternary strings will not be
the image of any polynomials; this will be the case, for example, for any ternary strings that contain binary
subsequences with leading zeros.)

Hence we have an injection from N(x) to N, so N(x) is countable.

Cantor’s Diagonalization
We have established that N, Z, Q all have the same cardinality. What about the real numbers, the set of all
points on the real line? Surely they are countable too? After all, the rational numbers, like the real numbers,
are dense (i.e., between any two rational numbers there is a rational number):

In fact, between any two real numbers there is always a rational number. It is really surprising, then, that
there are more real numbers than rationals. That is, there is no bijection between the rationals (or the natural
numbers) and the reals. In fact, we will show something even stronger: even the real numbers in the interval
[0,1] are uncountable!

Recall that a real number can be written out in an infinite decimal expansion. A real number in the interval
[0,1] can be written as 0.d1d2d3... Note that this representation is not unique; for example, 1 = 0.999..., so
the same real number can sometimes be expressed in two different ways.1 For definiteness we shall assume

1To see this, write x = .999 . . .. Then 10x = 9.999 . . ., so 9x = 9, and thus x = 1.
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that every real number is represented as a recurring decimal and we prefer to end with all 9’s where possible
(i.e., we choose the representation 0.999 . . . rather than 1).

Theorem: The set [0,1] of real numbers is not countable.

Cantor’s Diagonalization Proof: Suppose towards a contradiction that there is a bijection f : N→ [0,1].
This gives an infinite list of real numbers, namely, f (0), f (1), . . .. We can enumerate this infinite list as
follows:

The number circled in the diagonal is some real number r = 0.5479 . . ., since it is an infinite decimal expan-
sion. Now consider the real number s obtained by modifying every digit of r, say by replacing each digit
d with d + 2 modulo 10; thus in our example above, s = 0.7691 . . .. We claim that s does not occur in our
infinite list of real numbers. Suppose for contradiction that it did, and that it was the nth number in the list.
Then r and s differ in the nth digit: the nth digit of s is the nth digit of r plus 2 mod 10. So we have a real
number s that is not in the range of f . But this contradicts the assertion that f is a bijection. Thus the real
numbers are not countable.

Let us remark that the reason that we modified each digit by adding 2 modulo 10 as opposed to adding 1
is that the same real number can have two decimal expansions; for example 0.999... = 1.000.... But if two
real numbers differ by more than 1 in any digit they cannot be equal. Thus we are completely safe in our
assertion.

With Cantor’s diagonalization method, we proved that R is uncountable. What happens if we apply the same
method to Q, in a (futile) attempt to show the rationals are uncountable? Well, suppose for a contradiction
that our bijective function f : N→Q∩ [0,1] produces the following mapping:

This time, let us consider the number q obtained by modifying every digit of the diagonal, say by replacing
each digit d with d +2 modulo 10. Then in the above example q = 0.316..., and we want to try to show that
it does not occur in our infinite list of rational numbers. However, we do not know if q is rational (in fact,
it is extremely unlikely for the decimal expansion of q to be periodic). This is why the method fails when
applied to the rationals. When dealing with the reals, the modified diagonal number was guaranteed to be a
real number.

The Cantor Set

The Cantor set is a remarkable set construction involving the real numbers in the interval [0,1]. The set is
defined by repeatedly removing the middle thirds of line segments infinitely many times, starting with the
original interval. For example, the first iteration would involve the removal of the interval (1

3 ,
2
3), leaving

[0, 1
3 ]∪ [

2
3 ,1]. The first three iterations are illustrated below:
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The Cantor set contains all points that have not been removed: C = {x : x is never thrown out}. How much
of the original unit interval is left after this process is repeated infinitely? Well, we start with 1, and after the
first iteration we remove 1

3 of the interval, leaving us with 2
3 . For the second iteration, we keep 2

3 ×
2
3 of the

original interval. As we repeat the iterations infinitely, we are left with:

1−→ 2
3 −→

2
3 ×

2
3 −→

2
3 ×

2
3 ×

2
3 −→ ·· · −→ lim

n→∞
(2

3)
n = 0

According to the calculations, it looks like we have removed everything from the original interval! Does
this mean that the Cantor set is empty? No, it doesn’t. What it means is that the measure of the Cantor set
is zero; the Cantor set consists of isolated points and does not contain any non-trivial intervals. In fact, not
only is the Cantor set non-empty, it is uncountable!2

To see why, let us first make a few observations about ternary strings. In ternary notation, all strings consist
of digits (called “trits”) from the set {0,1,2}. All real numbers in the interval [0,1] can be written in ternary
notation. (For example, 1

3 can be written as 0.1, or equivalently as 0.0222 . . ., and 2
3 can be written as 0.2 or

as 0.1222 . . ..) Thus, in the first iteration, the middle third removed contains all ternary numbers of the form
0.1xxxxx. The ternary numbers left after the first removal can all be expressed either in the form 0.0xxxxx...
or 0.2xxxxx... (We have to be a little careful here with the endpoints of the intervals; but we can handle
them by writing 1

3 as 0.02222 . . . and 2
3 as 0.2.) The second iteration removes ternary numbers of the form

0.01xxxxx and 0.21xxxxx (i.e., any number with 1 in the second position). The third iteration removes 1’s
in the third position, and so on. Therefore, what remains is all ternary numbers with only 0’s and 2’s. Thus
we have shown that

C = {x ∈ [0,1] : x has a ternary representation consisting only of 0’s and 2’s}.

Finally, using this characterization, we can set up an onto map f from C to [0,1]. Since we already know
that [0,1] is uncountable, this implies that C is uncountable also. The map f is defined as follows: for x ∈C,
f (x) is defined as the binary decimal obtained by dividing each digit of the ternary representation of x by 2.
Thus, for example, if x = 0.0220 (in ternary), then f (x) is the binary decimal 0.0110. But the set of all
binary decimals 0.xxxxx. . . is in one-to-one correspondence with the real interval [0,1], and the map f is
onto because every binary decimal is the image of some ternary string under f (obtained by doubling every
binary digit).3 This completes the proof that C is uncountable.

Power Sets and Higher Orders of Infinity
Let S be any set. Then the power set of S, denoted by P(S), is the set of all subsets of S. More formally, it
is defined as: P(S) = {T : T ⊆ S}. For example, if S = {1,2,3}, then P(S) = {{},{1},{2},{3},{1,2},
{1,3},{2,3},{1,2,3}}.
What is the cardinality of P(S)? If |S| = k is finite, then |P(S)| = 2k. To see this, let us think of each
subset of S corresponding to a k-bit string. In the example above, the subset {1,3} corresponds to the string

2It’s actually easy to see that C contains at least countably many points, namely the endpoints of the intervals in the
construction—i.e., numbers such as 1

3 , 2
3 , 1

9 , 1
27 etc. It’s less obvious that C also contains various other points, such as 1

4 and
3

10 . (It’s a fascinating exercise to figure out why.)
3Note that f is not injective; for example, the ternary strings 0.20222 . . . and 0.22 map to binary strings 0.10111 . . . and 0.11

respectively, which denote the same real number. Thus f is not a bijection. However, the current proof shows that the cardinality
of C is at least that of [0,1], while it is obvious that the cardinality of C is at most that of [0,1] since C ⊂ [0,1]. Hence C has the
same cardinality as [0,1] (and as R).
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101. A 1 in the ith position indicates that the ith element of S is in the subset and a 0 indicates that it is
not. Now the number of binary strings of length k is 2k, since there are two choices for each bit position.
Thus |P(S)|= 2k. So for finite sets S, the cardinality of the power set of S is exponentially larger than the
cardinality of S. What about infinite (countable) sets? We claim that there is no bijection from S to P(S),
so P(S) is not countable. Thus for example the set of all subsets of natural numbers is not countable, even
though the set of natural numbers itself is countable.

Theorem: Let S be countably infinite. Then |P(S)|> |S|.
Proof: Suppose towards a contradiction that there is a bijection f : S→P(S). Recall that we can represent
a subset by a binary string, with one bit for each element of S. (So, since S is infinite, the string will be
infinitely long. Contrast the case of {0,1}∗ discussed earlier, which consists of all binary strings of finite
length.) Consider the following diagonalization picture in which the function f maps natural numbers x to
binary strings which correspond to subsets of S (e.g., 2→ 10100... = {0,2}):

In this case, we have assigned the following mapping: 0→ {0}, 1→ {}, 2→ {0,2}, . . . (i.e., the nth row
describes the nth subset as follows: if there is a 1 in the kth column, then k is in this subset, else it is not.)
Using a similar diagonalization argument to the earlier one, flip each bit along the diagonal: 1 → 0, 0 →
1, and let b denote the resulting binary string. First, we must show that the new element is a subset of S.
Clearly it is, since b is an infinite binary string which corresponds to a subset of S. Now suppose b were the
nth binary string. This cannot be the case though, since the nth bit of b differs from the nth bit of the diagonal
(the bits are flipped). So it’s not on our list, but it should be, since we assumed that the list enumerated all
possible subsets of S. Thus we have a contradiction, implying that P(S) is uncountable.

Thus we have seen that the cardinality of P(N) (the power set of the natural numbers) is strictly larger
than the cardinality of N itself. The cardinality of N is denoted ℵ0 (pronounced “aleph null”), while that of
P(N) is denoted 2ℵ0 . It turns out that in fact P(N) has the same cardinality as R (the real numbers), and
indeed as the real numbers in [0,1]. This cardinality is known as c, the “cardinality of the continuum.” So
we know that 2ℵ0 = c > ℵ0. Even larger infinite cardinalities (or “orders of infinity”), denoted ℵ1,ℵ2, . . .,
can be defined using the machinery of set theory; these obey (to the uninitiated somewhat bizarre) rules of
arithmetic. Several fundamental questions in modern mathematics concern these objects. For example, the
famous “continuum hypothesis” asserts that c = ℵ1 (which is equivalent to saying that there are no sets with
cardinality between that of the natural numbers and that of the real numbers).
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Self-Reference and Computability
The Liar’s Paradox
Propositions are statements that are either true or false. We saw before that some statements are not well
defined or too imprecise to be called propositions. But here is a statement that is problematic for more subtle
reasons: “All Cretans are liars.” So said a Cretan in antiquity, thus giving rise to the so-called liar’s paradox
which has amused and confounded people over the centuries. Actually the above statement isn’t really a
paradox; it simply yields a contradiction if we assume it is true, but if it is false then there is no problem.

A stronger formulation of this paradox is the following statement: “This statement is false.” Is the statement
true? If the statement is true, then what it asserts must be true; namely that it is false. But if it is false, then
it must be true. So it really is a paradox. Around a century ago, this paradox found itself at the center of
foundational questions about mathematics and computation.

We will now study how this paradox relates to computation. Before doing so, let us consider another
manifestation of the paradox, created by the great logician Bertrand Russell. In a village with just one
barber, every man keeps himself clean-shaven. Some of the men shave themselves, while others go to the
barber. The barber proclaims: “I shave all and only those men who do not shave themselves.” It seems
reasonable then to ask the question: Does the barber shave himself? Thinking more carefully about the
question though, we see that we are presented with a logically impossible scenario. If the barber does not
shave himself, then according to what he announced, he shaves himself. If the barber does shave himself,
then according to his statement he does not shave himself!

The Halting Problem
Are there tasks that a computer cannot perform? For example, we would like to ask the following basic
question when compiling a program: does it go into an infinite loop? In 1936, Alan Turing showed that there
is no program that can perform this test. The proof of this remarkable fact is very elegant and combines two
ingredients: self-reference (as in the liar’s paradox), and the fact that programs and data are two sides of the
same coin. In computers, a program is represented by a string of bits just as integers, characters, and other
data are. The only difference is in how the string of bits is interpreted.

We will now examine the Halting Problem. Given the description of a program and its input, we would like
to know if the program ever halts when it is executed on the given input. In other words, we would like to
write a program TestHalt that behaves as follows:

TestHalt(P, I) =

{
“halts”, if program P eventually halts, when run on input I;
“loops”, if program P never terminates, when run on input I.

Why can’t such a program exist? We’re going to use the fact that a program is just a bit string, so it can
be input as data. This means that it is perfectly valid to consider the behavior of TestHalt(P,P), which will
output “halts” if P halts on input P, and “loops” if P loops forever on input P. With this idea, we will now
prove that there cannot exist any program TestHalt that satisfies the specification above.
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Proof: Define the program Turing, as follows:

Turing(P):
1. If TestHalt(P,P) = “halts”, then loop forever.
2. Otherwise, halt.

So if the program P halts when given P as input, then Turing(P) loops forever; otherwise, Turing(P) halts.
Assuming we have the program TestHalt, we can easily use it as a subroutine in line 1 of the above program.

Now let us look at the behavior of Turing(Turing), i.e., look at the result of running the program Turing on
the input Turing. There are two cases: either it halts, or it does not. If Turing(Turing) halts, then it must be
the case that TestHalt(Turing, Turing) returned “loops.” But that would mean that Turing(Turing) would go
into an infinite loop on line 1, and in particular should not have halted. In the second case, if Turing(Turing)
does not halt, then it must be the case that TestHalt(Turing, Turing) returned “halts”, which would mean that
Turing(Turing) should have halted on line 2. In both cases, we arrive at a contradiction—which must mean
that our initial assumption, namely that the program TestHalt exists, was wrong. Thus, TestHalt cannot exist,
so it is impossible for a program to check if any general program halts. 2

What proof technique did we use? This was actually a proof by diagonalization. Why? Since the set of all
computer programs is countable (they are, after all, just finite-length strings over some alphabet, and the set
of all finite-length strings is countable), we can enumerate all programs as follows (where Pi represents the
ith program):

The (i, j)th entry is H if program Pi halts on input Pj, and L if it does not halt. Now if the program Turing
exists it must occur somewhere on our list of programs, say as Pn. But this cannot be, since if the nth entry in
the diagonal is H, meaning that Pn halts on Pn, then by its definition Turing loops on Pn; and if the entry is L,
then by definition Turing halts on Pn. Thus the behavior of Turing is different from that of Pn, and hence
Turing does not appear on our list. Since the list contains all possible programs, we must conclude that the
program Turing does not exist. And since Turing is constructed by a simple modification of TestHalt, we
can conclude that TestHalt does not exist either. Hence the Halting Problem cannot be solved.

In fact, there are many more cases of questions we would like to answer about a program, but cannot. For
example, we cannot know if a program ever outputs anything. We cannot know if it ever executes a specific
line of code. We cannot even check to see if the program is a virus. These issues are explored in greater
detail in the advanced course CS172.
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Introduction to Sets
A set is a well defined collection of objects considered as a whole. These objects are called elements or
members of a set, and they can be anything, including numbers, letters, people, cities, and even other sets.
By convention, sets are usually denoted by capital letters and can be described or defined by listing their
elements and surrounding the list by curly braces. For example, we can describe the set A to be the set whose
members are the first five prime numbers, or we can explicitly write: A = {2,3,5,7,11}. If x is an element
of A, we write x ∈ A. Similarly, if y is not an element of A, then we write y /∈ A. Two sets A and B are said
to be equal, written as A = B, if they have the same elements. The order and repetition of elements do not
matter, so {red, white, blue}= {blue, white, red}= {red, blue, white}. Sometimes, more complicated sets
can be defined by using a different notation. For example, the set of all rational numbers denoted by Q can
be written as: {a

b | a,b are integers, b 6= 0}. In English, this is read as “the set of all fractions such that the
numerator is an integer and the denominator is a non-zero integer.”

Cardinality
We can also talk about the size of a set, or its cardinality. If A = {1,2,3,4}, then the cardinality of A,
denoted by |A|, is 4. It is possible for the cardinality of a set to be 0. This set is called the empty set, denoted
by the symbol /0. A set can also have an infinite number of elements, such as the sets of all integers, prime
numbers, or odd numbers.

Subsets and Proper Subsets
If every element of a set A is also in a set B, then we say that A is a subset of B, written A ⊆ B, or A is
contained in B. We can also write B⊇ A, meaning that B is a superset of A, or B contains A. A proper subset
is a set A that is strictly contained in B, written as A ⊂ B, meaning that A excludes at least one element of
B. For example, consider the set B = {1,2,3,4,5}. Then {1,2,3} is both a subset and a proper subset of
B, while {1,2,3,4,5} is a subset but not a proper subset of B. Here are a few basic properties regarding
subsets:

• The empty set is a proper subset of any nonempty set A: /0⊂ A.

• The empty set is a subset of every set B: /0⊆ B.

• Every set A is a subset of itself: A⊆ A.

Intersections and Unions
The intersection of a set A with a set B, written as A∩B, is the set of all elements which are members of
both A and B. Two sets are said to be disjoint if A∩B = /0. The union of a set A with a set B, written as
A∪B, is the set of all elements which are either members of A or B (or both). For example, if A is the set of
all positive even numbers and B is the set of all positive odd numbers, then A∩B = /0, and A∪B = Z+, or
the set of all positive integers. Here are a few properties of intersections and unions:
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• A∪B = B∪A

• A∪ /0 = A

• A∩B = B∩A

• A∩ /0 = /0

Complements
If A and B are two sets, then the relative complement of A in B, written as B−A or B\A, is the set of elements
in B but not in A: B\A = {x ∈ B | x /∈ A}. For example, if B = {1,2,3} and A = {3,4,5}, then B\A = {1,2}.
For another example, if R is the set of real numbers and Q is the set of rational numbers, then R\Q is the
set of irrational numbers. Here are some important properties of complements:

• A\A = /0

• A\ /0 = A

• /0\A = /0

Significant Sets
In mathematics, some sets are referred to so commonly that they are denoted by special symbols. Some of
these numerical sets include:

• P denotes the set of all prime numbers: {2,3,5,7,11, . . .}.

• N denotes the set of all natural numbers: {0,1,2,3, . . .}.

• Z denotes the set of all integer numbers: {. . . ,−2,−1,0,1,2, . . .}.

• Z+ denotes the set of all positive integer numbers: {1,2,3, . . .}. Similarly, Z− denotes the set of all
negative integer numbers.

• Q denotes the set of all rational numbers: {a
b | a,b ∈ Z, b 6= 0}.

• R denotes the set of all real numbers.

• C denotes the set of all complex numbers.

In addition, the Cartesian product (also called the cross product) of two sets A and B, written as A×B, is
the set of all pairs whose first component is an element of A and whose second component is an element
of B. In set notation, A×B = {(a,b) | a ∈ A, b ∈ B}. For example, if A = {1,2,3} and B = {u,v}, then
A×B = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}. Given a set S, another significant set is the power set of S,
denoted by P(S), which is the set of all subsets of S: P(S) = {T | T ⊆ S}. For example, if S = {1,2,3},
then the power set of S is: P(S) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. It is interesting to
note that, if |S|= k, then |P(S)|= 2k.
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