
CS 70 Discrete Mathematics and Probability Theory
Summer 2011 Kamil HW 4

Due Monday, July 11, 4:59pm
Note the special due date.

1. (10 pts.) Practice with Lagrange interpolation
This problem will have you practice with Lagrange interpolation. Here, we are looking for a polynomial
p(x) of degree at most 2 that passes through the points (1,2), (2,3), and (3,5), working in GF(7). In other
words, we want p(x) to satisfy p(1)≡ 2 (mod 7), p(2)≡ 3 (mod 7), and p(3)≡ 5 (mod 7).

(a) Find the three polynomials ∆1(x), ∆2(x), ∆3(x). Simplify them to the form ax2+bx+c (mod 7) where
a,b,c are integers satisfying 0≤ a,b,c < 7. Circle or box your final answer.

(b) Using your answer to part 1 and Lagrange interpolation, find the polynomial p(x). Simplify it to the
form ax2 +bx+c (mod 7) where a,b,c are integers satisfying 0≤ a,b,c < 7. Circle or box your final
answer.

2. (12 pts.) A practice problem with polynomials
Define the sequence of polynomials by P0(x) = x+17, P1(x) = x2−7x+6, and Pn(x) = xPn−2(x)−Pn−1(x).
(For instance, P2(x) = 24x−6 and P3(x) = x3−7x2−18x+6.)

(a) Show that Pn(6)≡ 0 (mod 23) for every n ∈ N. (i.e., working in the field GF(23))

(b) Show that, for every prime q, if P2011(x) 6≡ 0 (mod q), then P2011(x) has at most 2011 roots modulo q
(i.e., in the field GF(q)).

3. (12 pts.) ISBN checksums
An ISBN is a 10-digit number that serves as a serial number for books. The last digit is a checksum, which
can be helpful for detecting data entry errors when typing in an ISBN. If the first nine digits are given by
x1, . . . ,x9 (where 0≤ xi ≤ 9), the checksum digit x10 is given by

x10 = mod (x1 +2x2 + · · ·+8x8 +9x9,11).

(The checksum digit is in the range 0 ≤ x10 ≤ 10. If the checksum digit is “10”, the letter X is substituted
when writing out an ISBN.) An equivalent way to describe the ISBN algorithm is like this: the checksum
digit x10 is chosen so that the following equation is true:

10x1 +9x2 + · · ·+3x8 +2x9 + x10 ≡ 0 (mod 11).

For instance, a sample ISBN is 0201896834; this has a valid checksum, since

10 ·0+9 ·2+8 ·0+7 ·1+6 ·8+5 ·9+4 ·6+3 ·8+2 ·3+1 ·4 = 176≡ 0 (mod 11).

For each of the following claims about this checksum algorithm, say whether the claim is true or false.
Justify your answer.
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(a) The ISBN checksum detects all single-digit errors (i.e., all errors where a single digit is entered incor-
rectly).

(b) The ISBN checksum detects all two-digit errors (i.e., all errors where a pair of digits, not necessarily
adjacent, are entered incorrectly).

(c) The ISBN checksum detects all errors where a pair of adjacent digits are transposed (e.g., where we
enter 0021896834 instead of 0201896834).

(d) The ISBN checksum detects all errors where any pair of digits (not necessarily adjacent) are transposed
(e.g., where we enter 3201896804 instead of 0201896834).

4. (12 pts.) Error-correcting codes: an optimization
In class, we saw an error-correcting code where the n message packets m1, . . . ,mn are encoded to the n+ k
encoded packets c1, . . . ,cn+k by setting P(x) = mnxn−1+ · · ·+m2x+m1, then defining ci = P(i) (all this is in
GF(q), where q is prime and larger than n+k, so each packet is a number in the range 0 . . .q−1). However,
one possible criticism of this error-correcting code is that decoding always requires a Lagrange interpolation
step, even if no packets are lost.

(a) In this part, you will develop a scheme that addresses this criticism. Let’s preserve the basic approach
where ci =Q(i) (for i= 1,2, . . . ,n+k), for some appropriately chosen polynomial Q(x) which encodes
the entire message, and which has degree at most n− 1. (As before, we’ll work in GF(q), where
q > n+ k and q is prime.) At the same time, let’s ensure c1 = m1, c2 = m2, . . . , cn = mn, so that if
no packets are lost, we can just use the first n encoded packets to immediately read off the message.
Describe how to choose Q(x) with this desired property, given m1, . . . ,mn. In other words, describe an
efficient algorithm we can use for encoding.

(b) For your scheme from part 1, if some packets are lost, the recipient can use Lagrange interpolation to
recover Q(x). Describe how the recipient could recover m1, . . . ,mn from Q(x).

5. (10 pts.) Secret Sharing
Give a secret sharing scheme which encodes an n bit secret but works with numbers with at most 32 bits,
i.e., choose modular arithmetic q less than 232− 1 for your field. (Assume n is much larger than 31 and
is divisible by 31.) Your scheme should share the secret among p people and have the property that any k
people can recover the entire secret, with k−1 people there are at least 231 possible secrets, with k− i people
there are at least 231i possible secrets until i = n/31 at which point there are 2n possibilities for secrets. You
may assume that k ≥ n/31.

6. (32 pts.) Counting, counting, and more counting
The only way to learn counting is to practice, practice, practice, so here is your chance to do so. We
encourage you to leave your answer as an expression (rather than trying to evaluate it to get a specific
number).

(a) How many 10-bit strings are there that contain exactly 4 ones?

(b) How many different 13-card bridge hands are there? (A bridge hand is obtained by selecting 13 cards
from a standard 52-card deck. The order of the cards in a bridge hand is irrelevant.)

(c) How many different 13-card bridge hands are there that contain no aces?

(d) How many different 13-card bridge hands are there that contain all four aces?

(e) How many different 13-card bridge hands are there that contain exactly 6 spades?

(f) How many 99-bit strings are there that contain more ones than zeros?

(g) If we have a standard 52-card deck, how many ways are there to order these 52 cards?
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(h) Two identical decks of 52 cards are mixed together, yielding a stack of 104 cards. How many different
ways are there to order this stack of 104 cards?

(i) How many different anagrams of FLORIDA are there? (An anagram of FLORIDA is any re-ordering
of the letters of FLORIDA, i.e., any string made up of the letters F, L, O, R, I, D, and A, in any order.
The anagram does not have to be an English word.)

(j) How many different anagrams of ALASKA are there?

(k) How many different anagrams of ALABAMA are there?

(l) How many different anagrams of MONTANA are there?

(m) We have 9 balls, numbered 1 through 9, and 27 bins. How many different ways are there to distribute
these 9 balls among the 27 bins? Assume the bins are distinguishable (e.g., numbered 1 through 27).

(n) We throw 9 identical balls into 7 bins. How many different ways are there to distribute these 9 balls
among the 7 bins such that no bin is empty? Assume the bins are distinguishable (e.g., numbered 1
through 7).

(o) How many different ways are there to throw 9 identical balls into 27 bins? Assume the bins are
distinguishable (e.g., numbered 1 through 27).

(p) There are exactly 20 students currently enrolled in a class. How many different ways are there to pair
up the 20 students, so that each student is paired with one other student?

7. (12 pts.) Grade these proofs
You be the grader. Students have submitted the following proofs. For each, decide whether you think the
proof is valid or not, and assign the student answer either an A (valid proof) or an F (invalid proof). If the
proof is invalid, explain clearly and concisely where the logical error in the proof is, including exactly which
step of the reasoning is erroneous. (If you think the proof is correct, you do not need to give any explanation.)
Simply saying that the claim (or the induction hypothesis) is false is not an acceptable explanation.

R+ denotes the set of all positive real numbers.

(a) Claim: We have 2n≤ n2 +1 for all n ∈ N.
Proof: We will prove this by simple induction on n. Let P(n) denote the proposition that 2n≤ n2 +1.
Base case: If n = 0, then 2n = 0≤ 02 +1 = n2 +1, so P(0) is true.
Inductive hypothesis: Assume P(n) is true for some n ∈ N. That is, we assume 2n≤ n2 +1.
Inductive step: We must show that P(n+1) is true. Now

2(n+1) = 2n+2≤ n2 +1+2≤ (n+1)2 +1,

where we have used the inductive hypothesis as well as the fact that n2 + 2 ≤ (n+ 1)2. We see that
P(n) =⇒ P(n+1) holds for every n ∈ N, so by the principle of mathematical induction, P(n) is true
for every n ∈ N, and the claim follows. 2

(b) Claim: For all n ∈ N, for all r ∈ R+, if r+ 1
r is an integer, then rn + 1

rn is an integer.
Proof: We will prove this by strong induction on n. Let P(n) denote the proposition that, for all r ∈R+,
if r+ 1

r is an integer, then rn + 1
rn is an integer.

Base cases:

• For n = 0, P(0) states that for all r, if r+ 1
r is an integer, then 1+1 is an integer. This is certainly

true, since 1+1 is an integer regardless of r.
• For n = 1, P(1) states that for all r, if r+ 1

r is an integer, then r+ 1
r is an integer. This is also true.
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Induction hypothesis: Let k be some natural number with k ≥ 2. Assume that P(k− 2) and P(k− 1)
are true, i.e., for all r, if r+ 1

r is an integer, then rk−2 + 1
rk−2 and rk−1 + 1

rk−1 are both integers.

Inductive step: We want to prove P(k). In other words, we want to prove that, for all r, if r+ 1
r is an

integer, then rk + 1
rk is an integer. So let r be arbitrary and assume r+ 1

r is an integer. By the inductive
hypothesis, both rk−2 + 1

rk−2 and rk−1 + 1
rk−1 are integers.

Notice the following identity (obtained by multiplying out the terms):(
r+

1
r

)(
rk−1 +

1
rk−1

)
= rk +

1
rk−2 + rk−2 +

1
rk .

Re-arranging terms, we find

rk +
1
rk =

(
r+

1
r

)
︸ ︷︷ ︸

integer

(
rk−1 +

1
rk−1

)
︸ ︷︷ ︸

integer (by I.H.)

−
(

rk−2 +
1

rk−2

)
︸ ︷︷ ︸

integer (by I.H.)

.

We see that the right-hand side must be an integer, so the left-hand side must be an integer too. In other
words, we have shown that rk + 1

rk is an integer. The claim follows by induction. 2

(c) Claim: Let m be any natural number with m > 1 and x,y be integers. If x4 + y4 ≡ 2x2y2 (mod m),
then either x≡ y (mod m) or x≡−y (mod m).
Proof: Suppose x,y form an integer solution to the equation, so we are given

x4 + y4 ≡ 2x2y2 (mod m).

Subtracting 2x2y2 from both sides, we find that

x4−2x2y2 + y4 ≡ 0 (mod m).

We can factor the left-hand side, to get

(x2− y2)2 ≡ 0 (mod m).

Taking the square root of both sides, we see that

x2− y2 ≡ 0 (mod m),

or in other words,
x2 ≡ y2 (mod m).

Taking the square root of both sides again, we find that either x ≡ y (mod m) or x ≡ −y (mod m)
(we have to include both possibilities, because the square root on each side could be either positive or
negative). This proves the claim. 2
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