CS61A Lecture 42

Amir Kamil

UC Berkeley
April 29, 2013

Python Example of a MapReduce Application @

The mapper and reducer are both self-contained Python programs
* Read from standard input and write to standard output!

Mapper [Tell Unix: this is Python)
#1/usr/bin/env python3
import sys The emi t function outputs a key
from ucb import main and value as a line of text to
from mapreduce import emit standard output

def emit_vowels(line):
for vowel in “aeiou”:
count = line.count(vowel)
if count > O:
emit(vowel, count)

for line in Sys-Stdi"3<[Mapper inputs are lines oftext]

emit_vowels(line) provided to standard input

Announcements

O HW13 due Wednesday

O Scheme project due tonight!!!

O Scheme contest deadline extended to Friday

Python Example of a MapReduce Application @

The mapper and reducer are both self-contained Python programs
* Read from standard input and write to standard output!

Reducer
#1/usr/bin/env python3

import sys L\/ Takes and returns iterators)
from ucb import main
from mapreduce import emit, group_values_by_key

Input: lines of text representing key-value pairs,
grouped by key

Output: Iterator over (key, value_iterator) pairs that
give all values for each key

for key, value_iterator in group_values_by_key(sys.stdin):
emit(key, sum(value_iterator))

MapReduce Execution Model

o |

\ [|
vod

> 60 O

|
tncermedinte | kizvkivka [[kv [k [y [[kv |

Grouped Ikl:_\',\‘_\ k2:v [kl v,V |k4 VLV Il.i v

bbb
[1]

' .
]

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

Output |

Parallel Computation Patterns @

Not all problems can be solved efficiently using functional programming

The Berkeley View project has identified 13 common computational patterns
in engineering and science:

1. Dense Linear Algebra 8. Combinational Logic

2. Sparse Linear Algebra 9. Graph Traversal

3. Spectral Methods 10. Dynamic Programming

4. N-Body Methods 11. Backtrack and Branch-and-Bound
5. Sructured Grids 12. Graphical Models

6. Unstructured Grids 13. Finite State Machines

7. MapReduce

MapReduce is only one of these patterns
The rest require shared mutable state

http://view.eecs.berkeley.edu/wiki/Dwarf Mine

Parallelism in Python @

Python provides two mechanisms for parallelism:

Threads execute in the same interpreter, sharing all data

* However, the CPython interpreter executes only one thread at a time,
switching between them rapidly at (mostly) arbitrary points

* Operations external to the interpreter, such as file and network 1/0, may
execute concurrently

Processes execute in separate interpreters, generally not sharing data

® Shared state can be communicated explicitly between processes

* Since processes run in separate interpreters, they can be executed in

parallel as the underlying hardware and software allow

The concepts of threads and processes exist in other systems as well

The Problem with Shared State @

Shared state that is mutated and accessed concurrently by multiple threads
can cause subtle bugs

Here is an example with two threads that concurrently update a counter:

from threading import Thread
counter = [0]

def increment():
counter[0] = counter[0] + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.join(Q) <,[Wait until other thread completes]
print(“count is now", counter[0])

What is the value of counter[0] at the end?

Threads @

The threading module contains classes that enable threads to be created
and synchronized

Here is a “hello world” example with two threads:

from threading import Thread, current_thread

def thread_hello(Q): Function that the new thread should run)
other = Thread(target=thread_say_hello, args=Q)

other.start() Start the other thread Arguments to
that function

thread_say_helloQ

def thread_say_hello():
print("hello from”, current_thread().name)

>>> thread_hello() . . .
hello from Thread-1 <[Prmt output is not synchronlzed]

hello from MainThread S0 can appear in any order

The Problem with Shared State @

from threading import Thread
counter = [0]

def increment():
counter[0] = counter[0] + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.joinQ)

print(“count is now", counter[0])

What is the value of counter[0] at the end?

Only the most basic operations in CPython are atomic, meaning that they have
the effect of occurring instantaneously

The counter increment is three basic operations: read the old value, add 1 to
it, write the new value

Processes @

The multiprocessing module contains classes that enable processes to
be created and synchronized

Here is a “hello world” example with two processes:

from multiprocessing import Process, current_process

def process_hello(): Function that the new process should runj

other = Process(target=process_say_hello, args=())

other.start() Start the other process Arguments to
that function

process_say_hello(Q

def process_say_hello(Q:
print(“hello from®, current_process().name)

>>> process_hello . n A
hellz from ﬁainPr‘c(;Zess Print output is not synchronized,
>>> hello from Process-1 s0 can appear in any order

The Problem with Shared State @

We can see what happens if a switch occurs at the wrong time by trying to
force one in CPython:

from threading import Thread
from time import sleep

counter = [0]

def increment():
count = counter[0]
sleep(0) <EMay cause the interpreter to switch threadsj
counter[0] = count + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.joinQ)

print(“count is now", counter[0])

The Problem with Shared State @

def increment():
count = counter[0]

sleep(0) —{ May cause the interpreter to switch threads j
counter[0] = count + 1

Given a switch at the sleep call, here is a possible sequence of operations on
each thread:

Thread 0 Thread 1
read counter[0]: ©
read counter[0]: ©
calculate @ + 1: 1
write 1 -> counter[0]
calculate 0 + 1: 1
write 1 -> counter[0]

The counter ends up with a value of 1, even though it was incremented twice!

Race Conditions @

A situation where multiple threads concurrently access the same data, and at
least one thread mutates it, is called a race condition

Race conditions are difficult to debug, since they may only occur very rarely

Access to shared data in the presence of mutation must be synchronized in
order to prevent access by other threads while a thread is mutating the data

Managing shared state is a key challenge in parallel computing

® Under-synchronization doesn’t protect against race conditions and other
parallel bugs

® Over-synchronization prevents non-conflicting accesses from occurring in
parallel, reducing a program’s efficiency

® Incorrect synchronization may result in deadlock, where different threads
indefinitely wait for each other in a circular dependency

We will see some basic tools for managing shared state

Synchronized Data Structures @

Some data structures guarantee synchronization, so that their operations are
atomic

from queue import Queue —_{ Synchronized FIFO queue]

queue = Queue()
def increment():
count = queue.get() { Waits until an item is available J
sleep(0)
queue.put(count + 1)

other = Thread(target=increment, args=())
other.start()

queue.put(0) <,[Add initial value of 0]

increment()
other.joinQ)

print(“count is now", queue.get())

