CS61A Lecture 41

Amir Kamil

UC Berkeley
April 26, 2013

Announcements @

0O HW13 due Wednesday

O Scheme project due Monday

O Scheme contest deadline extended to Friday

CPU Performance @

Parallelism @

Performance of individual CPU cores has largely stagnated in recent years
Graph of CPU clock frequency, an important component in CPU performance:

Clock Frequency man

31623 W Cypress
DEC

M Fujitsu
Hitachi

1000 3 [ B

| L]
[ ] M intel
W Motorola
oy o8
., 4 MRS
N -

. « =° | Ec]

H M sun
M oyrix
W HAL
M NexGen
W Ross
. W zicg
' W Centaur

1970 1075 1980 1985 1890 1995 2000 2005 2010 2015
Year

http://cpudb.stanford.edu

lock Frequency (MHz)
.

Applications must be parallelized in order run faster
* Waiting for a faster CPU core is no longer an option

Parallelism is easy in functional programming:

* When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

* Referential transparency: a call expression can be replaced by its value (or
vice versa) without changing the program

But not all problems can be solved efficiently using functional programming

Today: the easy case of parallelism, using only pure functions
* Specifically, we will look at MapReduce, a framework for such computations

Next time: the hard case, where shared data is required

MapReduce @

Systems @

MapReduce is a framework for batch processing of Big Data

What does that mean?
* Framework: A system used by programmers to build applications

* Batch processing: All the data is available at the outset, and results aren't
used until processing completes

Big Data: A buzzword used to describe data sets so large that they reveal
facts about the world via statistical analysis

The MapReduce idea:
* Data sets are too big to be analyzed by one machine
* When using multiple machines, systems issues abound

* Pure functions enable an abstraction barrier between data processing logic
and distributed system administration

Systems research enables the development of applications by defining and
implementing abstractions:

Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware

Networks provide a simple, robust data transfer interface to constantly
evolving communications infrastructure

Databases provide a declarative interface to software that stores and
retrieves information efficiently

Distributed systems provide a single-entity-level interface to a cluster of
multiple machines

A unifying property of effective systems:

Hide complexity, but retain flexibility




The Unix Operating System @

Python Programs in a Unix Environment @

Essential features of the Unix operating system (and variants):

® Portability: The same operating system on different hardware
® Multi-Tasking: Many processes run concurrently on a machine
¢ Plain Text: Data is stored and shared in text format

* Modularity: Small tools are composed flexibly via pipes

standard input®»  process >
standard output
- Pre S p

standard error

The standard streams in a Unix-like operating system
are conceptually similar to Python iterators

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

The values sys.stdin and sys.stdout also provide access to the Unix
standard streams as "files"

A Python "file" is an interface that supports iteration, read, and write
methods

Using these "files" takes advantage of the operating system standard stream
abstraction

MapReduce Evaluation Model @

MapReduce Evaluation Model @

Map phase: Apply a mapper function to inputs, emitting a set of intermediate
key-value pairs

* The mapper takes an iterator over inputs, such as text lines

® The mapper yields zero or more key-value pairs per input

(Gaogle.MapReduce > mapper L
(Is a Big Data framework

>
gl
(For‘ batch processing I

Reduce phase: For each intermediate key, apply a reducer function to
accumulate all values associated with that key

® The reducer takes an iterator over key-value pairs
® All pairs with a given key are consecutive

* The reducer yields 0 or more values,
each associated with that intermediate key

Google MapReduce )» mapper I_
Is a Big Data framework )

Al
For batch processing )

4

Reduce phase: For each intermediate key, apply a reducer function to
accumulate all values associated with that key

® The reducer takes an iterator over key-value pairs
® All pairs with a given key are consecutive

* The reducer yields 0 or more values,
each associated with that intermediate key

4 reducer I_
1 Pa: 6 i: 2
—| o: 5
4 reducer
01

Above-the-Line: Execution Model @

Below-the-Line: Parallel Execution

N

o |

}
(w)

\I/

tncermedinte | kizvkivka [ [ kv [k [y [ [ kv |

(D
(D
(O

Grouped Ikl:\_\,\_\ k2:v [kl v,V ‘k-& VW,V ILS\

b b6
L1 1

.
|

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

Output |

Map Task 1 Map Task 2

S S

aseyd de|y

©

Kl klwk2y | |IREN
\

\ I
[ Puriioning Function [ Partitining Funtion |

______ === ] === ===

1
1
1
K kdy | kv ksy |1

Wy | Kl k3w

I
[ Partiioning Funcion

==

<aseqd 20npay JNys

A "task" is a Unix
process running
on a machine

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html




MapReduce Assumptions @

Constraints on the mapper and reducer:

* The mapper must be equivalent to applying a deterministic pure function
to each input independently

* The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

* When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

* Referential transparency: a call expression can be replaced by its value (or
vice versa) without changing the program

In MapReduce, these functional programming ideas allow:
® Consistent results, however computation is partitioned
* Re-computation and caching of results, as needed

Python Example of a MapReduce Application @

The mapper and reducer are both self-contained Python programs
* Read from standard input and write to standard output!

Mapper [ Tell Unix: this is Python )
#1/usr/bin/env python3

import sys The emi t function outputs a key
from ucb import main and value as a line of text to
from mapreduce import emit standard output

def emit_vowels(line):
for vowel in “aeiou”:
count = line.count(vowel)
if count > O:
emit(vowel, count)

for lIine in sys.stdin: | Mapper inputs are lines of text
emit_vowels(line) provided to standard input

Python Example of a MapReduce Application @

The mapper and reducer are both self-contained Python programs
* Read from standard input and write to standard output!

Reducer
#1/usr/bin/env python3
import sys L\/ Takes and returns iterators j

from ucb import main
from mapreduce import emit, group_values_by_key

Input: lines of text representing key-value pairs,
grouped by key

Output: Iterator over (key, value_iterator) pairs that
give all values for each key

for key, value_iterator in group_values_by_key(sys.stdin):
emit(key, sum(value_iterator))

What the MapReduce Framework Provides @

Fault tolerance: A machine or hard drive might crash
* The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

* The framework can run multiple copies of a task and keep the result of the
one that finishes first

Network locality: Data transfer is expensive

* The framework tries to schedule map tasks on the machines that hold the
data to be processed

Monitoring: Will my job finish before dinner?!?
* The framework provides a web-based interface describing jobs




