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Announcements

HW12 due tonight

O HW13 out

O Scheme project, contest due Monday
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Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))
Success!
who: fillmore
who: eisenhower

If a fact has more than one relation, the first is the conclusion, and it is
satisfied if the remaining relations, the hypotheses, are satisfied

If a query has more than one relation, all must be satisfied

The interpreter lists all bindings that it can find to satisfy the query
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> (query (dog (name clinton) (color ?color)))
Success!
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Hierarchical Facts

Relations can contain relations in addition to atoms

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

vV V V VvV V V V V

Variables can refer to atoms or relations

> (query (dog (name clinton) (color ?color)))
Success!
color: white

> (query (dog (name clinton) ?info))
Success]!

----------------------------------

-----------------------------------
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> (query (dog (name ?name) (color ?color))
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Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))
(ancestor ?ancestor ?name)

(dog (name ?ancestor) (color ?color)))

Success!

name: barack color: tan ancestor: eisenhower

name: clinton color: white ancestor: abraham
name: grover color: tan ancestor: eisenhower

name: herbert color: brown ancestor: fillmore
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() (abc) (abc)
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Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

[(abc)(def)[(abcdef)]

> (fact (append-to-form () ?x ?Xx))
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Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

[(abc)(def)[(abcdef)]

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))
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Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

( Element \)' List | Q/List with element ) rat

(fact (insert ?a ?rgf5£"f“§F5;)) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

(fact (anagram (?a . °r) °?b) t
(insert ?a ?’s ?b) ra



Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

( Element \)' List | Q/List with element ) rat

(fact (insert ?a ?r{zggufmﬁFip)) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

(fact (anagram (?a . °r) °?b) t
(insert ?a ?’s ?b) ra
(anagram ?r  ?s))
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The basic operation of the Logic interpreter is to attempt to unify two
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Unification is finding an assignment to variables that makes two relations the
same

( (@ b)c (a b)) E>
True, {x: (a b)}
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Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

( (@ b)c (a b)) E>
True, {x: (a b)}

( ’X C °X )

( (@ b) c (a b))
( (@a?y)?z(a b))

( (@ b)c (a b)) E>
False

( ’X  ?X ’X )

[> True, {y: b, z: c}
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Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

-----------------------------------------
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{ x:(ab) } { }

Success!
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1. Look up variables in the current environment

2. Establish new bindings to unify elements
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(% o ) (2 jox )
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Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

--------------------------
L)

((a ....... b)c(ab)) (G b)c (@ b))
.................... I&,ﬂ'
T

-------------------

{ x:(ab) } { x:(ab) }

Success!
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1. Look up variables in the current environment

2. Establish new bindings to unify elements

-----------------------------------------

(i ?x Gci o i)

.
-----------------------------------------

-------------------

-------------------
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Success!
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Unification

(af
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2. Establish new bindings to unify elements
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L)

unify if they are the same

Symbols/relations
without variables only

7

{ x:
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((a b) c (a b))

?x ’X )

*
--------------------------
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Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i(a b)ici(a b)) (i(a b)ic (a b))
I&Iﬂl ~ w
gr—— ‘ SymbOIS/relatiOnS ----------------

(a b): without variables only C

(a b) unify if they are the same (a b)

R —— \ ) llllllllllllllll

{ x:(ab) } { x:(ab) }

Success! Failure.
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Two relations that contain variables can be unified as well

------------------------------------------------

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
................................................ 7 C}

------------------------------

------------------------------

Substituting values for variables may require multiple steps

Lookup('?x') => (a ?y c) lookup('?y') > b



Implementing Unification

def unify(e, f, env):

e = lookup(e, env)
T = lookup(Ff, env)
It e ==

return True
elif 1svar(e):
env.define(e, 1)
return True
elif 1svar(f):
env.define(f, e)
return True

eli1T scheme _atomp(e) or scheme atomp(f):
return False

else:
return unify(e.first, TfT_first, env) and \
unify(e.second, f.second, env)
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def.‘.H.Q.!.fY.g? ...... f ..... env) ......... 1. Look up variables in the

. e = lookup(e, env) : current environment
: ¥ = lookup(t, env)
if e ==

-------------------------------------------------------
*

i elif isvar(e):

env.define(e, f)<[

return True

E elif 1svar(f):
: env.define(fF, e)
return True

*
-------------------------------------------------------

eli1T scheme _atomp(e) or scheme atomp(f):
return False

2. Establish new bindings
to unify elements.

else:
return unify(e.first, TfT_first, env) and \
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\
def.‘.H.Q.!.fY.g? ...... f ..... env) ......... 1. Look up variables in the
. € = lookup(e, env) : current environment
: ¥ = lookup(t, env) )
,iT e == T: < Symbols/relations |
e return True without variables only
i elif isvar(e): ¢ | unify if they are the same |
: env.define(e, f) . w
: return True < 2. Establish new bindings
. elif isvar(f): 2l to unify elements. )

env.define(t, e)
return True

*
-------------------------------------------------------

. eli1f scheme_atomp(e) or scheme_atomp(f):
kS return False

else:
return unify(e.first, TfT_first, env) and \
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- - \
defumfy(efenv) ...... ~|1. Look up variables in the
. € = lookup(e, env) : current environment
: ¥ = lookup(t, env) J
,if e == f: < Symbols/relations
e return True without variables only
i i elif isvar(e): : | unify if they are the same
: env.define(e, f) . N
return True il 2. Establish new bindings
Eellf isvar(f): ; | to unify elements. | .
: env.define(f, e) Unification
return True : recursively
~ elif scheme atomp(e) or scheme atomp(F): unifies each
% return False pair of elements
else V ’

---------------------------------------------------------------------------------------------------------------------

‘return unify(e.first, f.first, env) and \:
: unify(e.second, f.second, env) '

---------------------------------------------------------------------------------------------------------------------
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The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Some good ideas:
®* Limiting depth of the search avoids infinite loops
® Each time a factis used, its variables are renamed

® Bindings are stored in separate frames to allow backtracking
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def search(clauses, env, depth):

--------------------------------------------

: 1T clauses is nil::

yield env

--------------------------------------------

---------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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*

---------------------------------------------------------------------------------------------------------------

env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):
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-----------------------------
‘ 0

y'e'dresu't Whatever calls search can
access all yielded results
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> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:

> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))
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