CS61A Lecture 40

Amir Kamil and Stephen Martinis

UC Berkeley
April 24, 2013

Announcements

HW12 due tonight

O HW13 out

O Scheme project, contest due Monday

Logic Language Review

Logic Language Review

Expressions begin with query or fact followed by relations

Logic Language Review

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

Logic Language Review

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))

> (fact (parent fillmore abraham))

> (fact (parent abraham clinton))

> (fact (ancestor ?a ?y) (parent ?a ?y))

> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

(fact (parent eisenhower fillmore))

(fact (parent fillmore abraham))

(fact (parent abraham clinton))

(fact (ancestor ?a ?y) (parent ?a ?y))

(fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
(query (ancestor ?who abraham))

vV VvV V V VvV V

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))
Success!
who: fillmore
who: eisenhower

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))
Success!
who: fillmore
who: eisenhower

If a fact has more than one relation, the first is the conclusion, and it is
satisfied if the remaining relations, the hypotheses, are satisfied

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))
Success!
who: fillmore
who: eisenhower

If a fact has more than one relation, the first is the conclusion, and it is
satisfied if the remaining relations, the hypotheses, are satisfied

If a query has more than one relation, all must be satisfied

Logic Language Review @

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))
Success!
who: fillmore
who: eisenhower

If a fact has more than one relation, the first is the conclusion, and it is
satisfied if the remaining relations, the hypotheses, are satisfied

If a query has more than one relation, all must be satisfied

The interpreter lists all bindings that it can find to satisfy the query

Hierarchical Facts

Hierarchical Facts

Relations can contain relations in addition to atoms

Hierarchical Facts

Relations can contain relations in addition to atoms

> (fact (dog (name abraham) (color white)))

Hierarchical Facts

Relations can contain relations in addition to atoms

vV V V VvV V V V V

(fact
(fact
(fact
(fact
(fact
(fact
(fact
(fact

(dog
(dog
(dog
(dog
(dog
(dog
(dog
(dog

(name
(name
(name
(name
(name
(name
(name
(name

abraham) (color white)))
barack) (color tan)))
clinton) (color white)))
delano) (color white)))
eisenhower) (color tan)))
fillmore) (color brown)))
grover) (color tan)))
herbert) (color brown)))

Hierarchical Facts

Relations can contain relations in addition to atoms

vV V V VvV V V V V

(fact
(fact
(fact
(fact
(fact
(fact
(fact
(fact

(dog
(dog
(dog
(dog
(dog
(dog
(dog
(dog

(name
(name
(name
(name
(name
(name
(name
(name

abraham) (color white)))
barack) (color tan)))

clinton) (color white)))
delano) (color white)))
eisenhower) (color tan)))
fillmore) (color brown)))
grover) (color tan)))

herbert) (color brown)))

Hierarchical Facts

Relations can contain relations in addition to atoms

vV V V VvV V V V V

Variables can refer to atoms or relations

(fact
(fact
(fact
(fact
(fact
(fact
(fact
(fact

(dog
(dog
(dog
(dog
(dog
(dog
(dog
(dog

(name
(name
(name
(name
(name
(name
(name
(name

abraham) (color white)))
barack) (color tan)))

clinton) (color white)))
delano) (color white)))
eisenhower) (color tan)))
fillmore) (color brown)))
grover) (color tan)))

herbert) (color brown)))

Hierarchical Facts

Relations can contain relations in addition to atoms

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

vV V V VvV V V V V

Variables can refer to atoms or relations

> (query (dog (name clinton) (color ?color)))
Success!
color: white

Hierarchical Facts

Relations can contain relations in addition to atoms

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

vV V V VvV V V V V

Variables can refer to atoms or relations

> (query (dog (name clinton) (color ?color)))
Success!
color: white

> (query (dog (name clinton) ?info))
Success!
info: (color white)

Hierarchical Facts

Relations can contain relations in addition to atoms

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

vV V V VvV V V V V

Variables can refer to atoms or relations

> (query (dog (name clinton) (color ?color)))
Success!
color: white

> (query (dog (name clinton) ?info))
Success]!

Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))

Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))

(ancestor ?ancestor ?name)

Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))
(ancestor ?ancestor ?name)

(dog (name ?ancestor) (color ?color)))

Example: Combining Multiple Data Sources @

Which dogs have an ancestor of the same color?

> (query (dog (name ?name) (color ?color))
(ancestor ?ancestor ?name)

(dog (name ?ancestor) (color ?color)))

Success!

name: barack color: tan ancestor: eisenhower

name: clinton color: white ancestor: abraham
name: grover color: tan ancestor: eisenhower

name: herbert color: brown ancestor: fillmore

Example: Appending Lists

Example: Appending Lists

Two lists append to form a third list if:

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

® List 1 and 3 have the same first element

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

® List 1 and 3 have the same first element

(abc) (def) (abcdeef)

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

® List 1 and 3 have the same first element

a]b c) (def) (abcdef)

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

® List 1 and 3 have the same first element

a]b c) (d e f) (a]b c d e f)

> (fact (append-to-form () ?x ?Xx))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:

® List 1 and 3 have the same first element

a]b c) (d e f) (a]b c d e f)

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

a]b c) (d e f) (a]b c d e f)

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

(a)b <)) (d e f) (a]b c d e f)

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

[(abc)(def)kabcdef)

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

[(abc)(def)[(abcdef)]

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

Example: Appending Lists

Two lists append to form a third list if:

® The first list is empty and the second and third are the same

() (abc) (abc)

® Both of the following hold:
® List 1 and 3 have the same first element

®* The rest of list 1 and all of list 2 append to form the rest of list 3

[(abc)(def)[(abcdef)]

> (fact (append-to-form () ?x ?Xx))

> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))

Logic Example: Anagrams

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:
® The empty list for an empty list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:
® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is: 3 r t

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is: a‘ -t
® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is: a‘ -t
® The empty list for an empty list
®* The first element of the list inserted into -t

an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

(fact (insert ?a ?r (?a . ?r)))) r ta

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
an anagram of the rest of the list

(Element \) rat
(fact (insert ?a ?r (?a . ?r)))) r ta

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

(Element \)' List| rat

(fact (insert ?a ?r (?a . ?r)))) r ta

t r

at r

tar

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list m T
ar t

(Element \)' List |Q/Listwith element) rat
(fact (insert ?a ?ri(?a . ?r)))) r ta
tr

at r

tar

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list

®* The first element of the list inserted into
: rt
an anagram of the rest of the list

(Element \)' List |Q/Listwith element) rat

*

(fact (insert ?a ?ri(?a . ?r)})) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

at r

tar

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

(Element \)' List |Q/Listwithe|ement) rat

(fact (insert ?a ?r‘(?a?r')))) r ta

(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

(Element \)' List | Q/List with element) rat

(fact (insert ?a ?rgf5£"f“§F5;)) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

(fact (anagram (?a . °r) °?b)

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

(Element \)' List | Q/List with element) rat

(fact (insert ?a ?rgf5£"f“§F5;)) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

(fact (anagram (?a . °r) °?b) t
(insert ?a ?’s ?b) ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

® The empty list for an empty list
®* The first element of the list inserted into

an anagram of the rest of the list : t
ar

(Element \)' List | Q/List with element) rat

(fact (insert ?a ?r{zggufmﬁFip)) r ta
(fact (insert ?a (?b . ?r) (?b . ?s))

(insert ?a r ?s)) tr

(fact (anagram () ())) at r

tar

(fact (anagram (?a . °r) °?b) t
(insert ?a ?’s ?b) ra
(anagram ?r ?s))

Pattern Matching

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((@ b) c (a b))

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((@ b) c (a b))

(’X C °X)

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((a b)c (a b))) o
(S) I> rue, {x: (a b)}

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((a b)c (a b))) o
(S) I> rue, {x: (a b)}

((a b)y c (a b))

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((a b)c (a b))) o
(S) I> rue, {x: (a b)}

((@ b) c (a b))
((@a?y)?z(a b))

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((@ b)c (a b)) E>
True, {x: (a b)}

(’X C °X)

((a b)y c (a b))

((a?y) ?z(a b)) [> True, {y: b, z: c}

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((@ b)c (a b)) E>
True, {x: (a b)}

(’X C °X)

((a b)y c (a b))

((a?y) ?z(a b)) [> True, {y: b, z: c}

((@ b)y c (a b))

(’X ?X ’X)

Pattern Matching @

The basic operation of the Logic interpreter is to attempt to unify two
relations

Unification is finding an assignment to variables that makes two relations the
same

((@ b)c (a b)) E>
True, {x: (a b)}

(’X C °X)

((@ b) c (a b))
((@a?y)?z(a b))

((@ b)c (a b)) E>
False

(’X ?X ’X)

[> True, {y: b, z: c}

Unification

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment

1. Look up variables in the current environment

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

((@ b) c(a b))

(’X C ’X)

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

................
* hS

(’X ic ?x)

lllllllllllllllllll

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

................
* hS

(’X ic ?x)

lllllllllllllllllll

{ x:(ab) }

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i x fci o x)

.

{ x:(ab) }

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i P ici o i)

.

{ x:(ab) }

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i ?x Gci o i)

.

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i ?x Gci o i)

.

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i P ici o i)

.

{ x:(ab) }

Success!

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

((a bicia b)) (@ b)c (a b))
(>y c >y) (?x ?x ?x)

.

{ x:(ab) } { }

Success!

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

((a b)c(ab)) ((a b) c (a b))
(% o) (2 jox)
.................... S

e

{ x:(ab) } { }

Success!

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

((a b)c(ab)) ((a b) c (a b))
(% o) (2 jox)
.................... S

e

{ x:(ab) } { x:(ab) }

Success!

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

L)

((a b)c(ab)) (G b)c (@ b))
.................... I&,ﬂ'
T

{ x:(ab) } { x:(ab) }

Success!

Unification

(af

Unification unifies each pair of corresponding elements in two relations,

accumulating an assignment

1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i ?x Gci o i)

.

{ x:(ab) }

Success!

L)

((a b) c (a b))

(E ?X i?xé ’X)

*

Unification

(af

Unification unifies each pair of corresponding elements in two relations,

accumulating an assignment

1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i ?x Gci o i)

.

{ x:(ab) }

Success!

(i x

o*

L)

unify if they are the same

Symbols/relations
without variables only

7

{ x:

((a b) c (a b))

?x ’X)

*

Unification @

Unification unifies each pair of corresponding elements in two relations,
accumulating an assignment
1. Look up variables in the current environment

2. Establish new bindings to unify elements

(i(a b)ici(a b)) (i(a b)ic (a b))
I&Iﬂl ~ w
gr—— ‘ SymbOIS/relatiOnS ----------------

(a b): without variables only C

(a b) unify if they are the same (a b)

R —— \) llllllllllllllll

{ x:(ab) } { x:(ab) }

Success! Failure.

Unification with Two Variables @

Unification with Two Variables @

Two relations that contain variables can be unified as well

Unification with Two Variables @

Two relations that contain variables can be unified as well
(?X ?X)

((a?yc) (ab ?z))

Unification with Two Variables @

Two relations that contain variables can be unified as well

(?X ?X)
[> True, {
((a?yc) (ab ?z))

Unification with Two Variables @

Two relations that contain variables can be unified as well

*

(¢ ?x PX)
I> True, {
(i(a?y c) (ab?z))

Unification with Two Variables @

Two relations that contain variables can be unified as well

*

(i x o x)
I> True, {x: (a ?y c),
(i(a ?y c)i(ab ?z))

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

I> True, {x: (a ?y c),

--

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

I> True, {x: (a ?y c),

--

(a?y c)
(a b ?z)

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

I> True, {x: (a ?y c),

--

(ai?y «c)

(a b ?z)

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

I> True, {x: (a ?y c),

--

Qaﬁ bé?z)

g
*
an?® ®annns?®

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: sl : [> TI"UE, {X: (a ?y C)’
y: b,

--

Qaﬁ bé?z)

g
*
an?® ®annns?®

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(?X PX)
: P E [> TI"UE, {X: (a ?y C)’
y: b,

--

(a >y)
(bPZD

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(PX PX)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

(a >y)
(bPZD

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
... 7 C}

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

Substituting values for variables may require multiple steps

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

Substituting values for variables may require multiple steps

lookup('?x")

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

Substituting values for variables may require multiple steps

Lookup('?x') => (a ?y c)

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

Substituting values for variables may require multiple steps

Lookup('?x') => (a ?y c) lookup('?y"')

Unification with Two Variables @

Two relations that contain variables can be unified as well

--

(¢ ?x iiox D)
: i : I> True, {x: (a ?y c),

y: b,
.. 7 C}

Substituting values for variables may require multiple steps

Lookup('?x') => (a ?y c) lookup('?y') > b

Implementing Unification

def unify(e, f, env):

e = lookup(e, env)
T = lookup(Ff, env)
It e ==

return True
elif 1svar(e):
env.define(e, 1)
return True
elif 1svar(f):
env.define(f, e)
return True

eli1T scheme _atomp(e) or scheme atomp(f):
return False

else:
return unify(e.first, TfT_first, env) and \
unify(e.second, f.second, env)

Implementing Unification

def.‘.H.Q.!.fY.g? f env) 1. Look up variables in the

. e = lookup(e, env) : current environment
: ¥ = lookup(t, env)
it e == f:

return True
elif 1svar(e):
env.define(e, 1)
return True
elif 1svar(f):
env.define(f, e)
return True

eli1T scheme _atomp(e) or scheme atomp(f):
return False

else:
return unify(e.first, TfT_first, env) and \
unify(e.second, f.second, env)

Implementing Unification

def.‘.H.Q.!.fY.g? f env) 1. Look up variables in the

. e = lookup(e, env) : current environment
: ¥ = lookup(t, env)
if e ==

*

i elif isvar(e):

env.define(e, f)<[

return True

E elif 1svar(f):
: env.define(fF, e)
return True

*

eli1T scheme _atomp(e) or scheme atomp(f):
return False

2. Establish new bindings
to unify elements.

else:
return unify(e.first, TfT_first, env) and \
unify(e.second, f.second, env)

Implementing Unification

\
def.‘.H.Q.!.fY.g? f env) 1. Look up variables in the
. € = lookup(e, env) : current environment
: ¥ = lookup(t, env))
,iT e == T: < Symbols/relations |
e return True without variables only
i elif isvar(e): ¢ | unify if they are the same |
: env.define(e, f) . w
: return True < 2. Establish new bindings
. elif isvar(f): 2l to unify elements.)

env.define(t, e)
return True

*

. eli1f scheme_atomp(e) or scheme_atomp(f):
kS return False

else:
return unify(e.first, TfT_first, env) and \
unify(e.second, f.second, env)

Implementing Unification @

- - \
defumfy(efenv) ~|1. Look up variables in the
. € = lookup(e, env) : current environment
: ¥ = lookup(t, env) J
,if e == f: < Symbols/relations
e return True without variables only
i i elif isvar(e): : | unify if they are the same
: env.define(e, f) . N
return True il 2. Establish new bindings
Eellf isvar(f): ; | to unify elements. | .
: env.define(f, e) Unification
return True : recursively
~ elif scheme atomp(e) or scheme atomp(F): unifies each
% return False pair of elements
else V ’

‘return unify(e.first, f.first, env) and \:
: unify(e.second, f.second, env) '

Searching for Proofs

Searching for Proofs

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))
the space of facts to find (fact (app (?a . ?r) ?y (?a . ?z))
unifying facts and an env that (app ’ro Ry °’z))

prove the query to be true (query (app ?left (c d) (e b c d)))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?2))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))

conclusion <- hypothesis
(app ?r (c d) (b c d)))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))

conclusion <- hypothesis
(app ?r (c d) (b c d)))

(app (Pa2 . ?r2) ?y2 (?a2 . ?z2))

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))

conclusion <- hypothesis
(app ?r (c d) (b c d)))

facts and queries

(app (Pa2 . ?r2) ?y2 (?a2 . ?z2)) _
Variables are local to

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis

(app ?r2 (c d) (c d))

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis

(app ?r2 (c d) (c d))

Variables are local to
facts and queries

(app () ?x ?x)

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °’z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (cd), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b cd)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left:

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b cd),ileft: (?a . ?r)}
Gaop (33 . 2Ry 2y (2 payy
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left:

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

*

(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

¢ .

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left:

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

*

(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

¢ .

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left: (e .

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

*

(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

¢ .

* *

(app (Pa2 . ?r2) ?y2 (?a2 . ?22))<{

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left: (e .

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

*

(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

¢ .

* *

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left: (e .

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

*

(app (?a . ?r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

¢ .

* *

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x) Left: (e . (b .

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))
the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))
(app >left (c d) (e b c d))

{a: (e d), 2z: (b ¢ d),STSETTERETI

.
--

(app (?a . ?°r) ?y (?a . ?2))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

00000

* *

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis
(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

*

(app () ?x ?x) Left: (e . (b .

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

0

(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

% .

6 *

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis
(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

*

(app () ?x ?x) Left: (e . (b . ()))

Variables are local to
facts and queries

Searching for Proofs @

The Logic interpreter searches (fact (app () ?x ?x))

the space of facts to find (fact (app (?a . ?r) ?y (?a . ?2))
unifying facts and an env that (app ’ro Ry °z))
prove the query to be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

0

(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

% .

6 *

*

*

(app (Pa2 . ?r2) ?y2 (?a2 . ?zZ))T

conclusion <- hypothesis
(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

*

(app () ?x ?x) Left: (e . (b . ())) 5 (e b)

Variables are local to
facts and queries

Underspecified Queries

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query
What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)
Success!

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)
Success!
r: () what: (1 2 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)
Success!

r: () what: (1 2 3)

r. (?s_6) what: (1 2 ?s 6 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)

Success!
r: () what: (1 2 3)
r. (?s_6) what: (1 2 ?s 6 3)

r. (?s_6 ?s 8)what: (1 2 ?s 6 ?s 8 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)
Success!

r: () what: (1 2 3)

r. (?s_6) what: (1 2 ?s 6 3)

r. (?s_6 ?s 8)what: (1 2 ?s 6 ?s 8 3)

r. (?s 6 ?s 8 ?s 10) what: (1 2 ?s 6 ?s 8 ?s 10 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)

Success!

r: () what: (1 2 3)

r. (?s_6) what: (1 2 ?s 6 3)

r. (?s_6 ?s 8)what: (1 2 ?s 6 ?s 8 3)

r. (?s 6 ?s 8 ?s 10) what: (1 2 ?s 6 ?s 8 ?s 10 3)

r. (?s 6 ?s 8 ?s 10 ?s 12) what: (1 2 ?s 6 ?s 8 ?s 10 ?s 12 3)

Underspecified Queries @

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)

Success!

r: () what: (1 2 3)

r. (?s_6) what: (1 2 ?s 6 3)

r. (?s_6 ?s 8)what: (1 2 ?s 6 ?s 8 3)

r. (?s 6 ?s 8 ?s 10) what: (1 2 ?s 6 ?s 8 ?s 10 3)

r. (?s 6 ?s 8 ?s 10 ?s 12) what: (1 2 ?s 6 ?s 8 ?s 10 ?s 12 3)

Search for possible unification @

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Some good ideas:

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Some good ideas:

®* Limiting depth of the search avoids infinite loops

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Some good ideas:
®* Limiting depth of the search avoids infinite loops

® Each time a factis used, its variables are renamed

Search for possible unification @

The space of facts is searched exhaustively, starting from the query and
following a depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:
env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:
env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env rule)
yield each result

Some good ideas:
®* Limiting depth of the search avoids infinite loops
® Each time a factis used, its variables are renamed

® Bindings are stored in separate frames to allow backtracking

Implementing Search @

def search(clauses, env, depth):
iIT clauses is nil:
yield env
elit DEPTH _LIMIT 1s None or depth <= DEPTH LIMIT:
for fact in facts:
fact = rename variables(fact, get unique_id())
env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):
for result in search(clauses.second, env_rule, depth+l):

yield result

Implementing Search @

def search(clauses, env, depth):
{?%NE]QQQQQ"EQ"HETQ
yield env
S1if DEPTH LIMIT is None or depth <= DEPTH_LINIT:
for fact in facts:
fact = rename variables(fact, get unique_id())
env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):

for result in search(clauses.second, env_rule, depth+l):

yield result

Implementing Search @

def search(clauses, env, depth):

: 1T clauses is nil::

yield env

--

for fact in facts:
fact = rename variables(fact, get unique_id())
env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):
for result in search(clauses.second, env_rule, depth+l):

yield result

Implementing Search @

def search(clauses, env, depth):

--

: 1T clauses is nil::

yield env

--

--
*

env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):
for result in search(clauses.second, env_rule, depth+l):

yield result

Implementing Search @

def search(clauses, env, depth):

--

: 1T clauses is nil::

yield env

--

--
*

env_head = Frame(env)
iIT unify(fact.first, clauses.first, env_head):
for env_rule i1In search(fact.second, env_head, depth+l):

for result in search(clauses.second, env_rule, depth+l):

‘ 0

y'e'dresu't Whatever calls search can
access all yielded results

An Evaluator in Logic

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:
> (fact (ints 1 2))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:

> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

Finally, we define the evaluator:

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:

> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

Finally, we define the evaluator:

> (fact (eval ?x ?x) (ints ?x ?something))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))
Finally, we define the evaluator:
> (fact (eval ?x ?x) (ints ?x ?something))
> (fact (eval (+ ?0p@ ?Popl) ?val)
(add ?a@ ?al ?val) (eval ?op® ?a@) (eval ?opl ?al))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))
Finally, we define the evaluator:
> (fact (eval ?x ?x) (ints ?x ?something))
> (fact (eval (+ ?0p@ ?Popl) ?val)
(add ?a@ ?al ?val) (eval ?op® ?a@) (eval ?opl ?al))

> (query (eval (+ 1 (+ ?what 2)) 5))

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))
Finally, we define the evaluator:
> (fact (eval ?x ?x) (ints ?x ?something))
> (fact (eval (+ ?0p@ ?Popl) ?val)
(add ?a@ ?al ?val) (eval ?op® ?a@) (eval ?opl ?al))

> (query (eval (+ 1 (+ ?what 2)) 5))
Success!

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:
> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

Finally, we define the evaluator:

> (fact (eval ?x ?x) (ints ?x ?something))
> (fact (eval (+ ?0p@ ?Popl) ?val)

(add ?a@ ?al ?val) (eval ?op® ?a@) (eval ?opl ?al))
> (query (eval (+ 1 (+ ?what 2)) 5))

Success!
what: 2

An Evaluator in Logic @

We can define an evaluator in Logic; first, we define numbers:

> (fact (ints 1 2))
> (fact (ints 2 3))
> (fact (ints 3 4))
> (fact (ints 4 5))

Then we define addition:

> (fact (add 1 ?x ?y) (ints ?x ?y))
> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

Finally, we define the evaluator:

> (fact (eval ?x ?x) (ints ?x ?something))
> (fact (eval (+ ?0p@ ?Popl) ?val)
(add ?a@ ?al ?val) (eval ?op® ?a@) (eval ?opl ?al))

> (query (eval (+ 1 (+ ?what 2)) 5))
Success!
what: 2
what: (+ 1 1)

