CS61A Lecture 38

Robert Huang

UC Berkeley
April 17, 2013



Announcements

HW12 due Wednesday

O Scheme project, contest out



Review: Program Generator




Review: Program Generator

A computer program is just a sequence of bits



Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences



Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

from 1tertools 1mport product

def bitstrings():
size = 0
while True:
tuples = product((°0", "1%), repeat=size)
for elem in tuples:
yield ""_join(elem)
size += 1



Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

from 1tertools 1mport product

def bitstrings():
size = 0
while True:
tuples = product((°0", "1%), repeat=size)
for elem in tuples:
yield ""_join(elem)
size += 1

>>> [next(bs) for _ in range(0, 10)]



Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

from 1tertools 1mport product

def bitstrings():
size = 0
while True:
tuples = product((°0", "1%), repeat=size)
for elem in tuples:
yield ""_join(elem)
size += 1

>>> [next(bs) for _ in range(0, 10)]
[Il, I@l) l1l, l@@l, I@ll, llel, Illl, l@@@l’ leell, I@l@l]



Review: Function Streams




Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate



Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)



Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

[F]T T T T F T F T F
TI[TIF F F F F T F T
T FIT]F T F T F T T
T F F[T]IT F F T F T
T F T TI[F]T F T F T
F F F F T[FIF F T T
T FTFFFI[F]T T T
F T F T TF TI[F]F T
T FTFFTTFIFIT
F T T TTTT T TI[F]



Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T] T F F T F T
T F T T[F] T F T F T
F F F F T[F]F F T T
T F TF F F[F]T T T
F T F T T F TI[F]JF T
T F TF F T T FIF]T
Functions F T T T T T T T T [F]



Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

Inputs
[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T] T F F T F T
T F T T[F] T F T F T
F F F F T[F]F F T T
T F TF F F[F]T T T
F T F T T F TI[F]JF T
T F TF F T T FIF]T
Functions F T T T T T T T T [F]



Review: Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

Inputs
[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T] T F F T F T
T F T T[F] T F T F T
F F F F T[F]F F T T
T F TF F F[F]T T T
F T F T T F TI[F]JF T
T F TF F T T FIF]T
Functions F T T T T T T T T [F]

T™ F F F T T T T T T



Programs and Mathematical Functions @




Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f

* func terminates on every input in D



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f
* func terminates on every input in D
® The return value of func(X) is the same as f(x) for all xin D



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f
* func terminates on every input in D
® The return value of func(X) is the same as f(x) for all xin D

def func(x):
return (X * x) % 2



Programs and Mathematical Functions @

A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f
* func terminates on every input in D
® The return value of func(X) is the same as f(x) for all xin D

def func(x):
return (X * x) % 2

A mathematical function f is computable if there exists a program (i.e. a
Python function) func that computes it



Computability




Computability

Are all functions computable?



Computability

Are all functions computable?

More specifically, we hate infinite loops



Computability @

Are all functions computable?
More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it
on our programs to determine if they have infinite loops:



Computability @

Are all functions computable?
More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it
on our programs to determine if they have infinite loops:

haltsonallinputs : Programs — {0, 1},

1 if P halt 1 inputs
haltsonallinputs(P) = { 1 1alts on all inputs

0 otherwise



Halts




Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

Is this function computable?



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

Is this function computable?

It’s not as simple as just running the program P on n to see if it terminates



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

Is this function computable?

It’s not as simple as just running the program P on n to see if it terminates

How long do we let it run before deciding that it won’t terminate?



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

1 if P halts on input n
halts(P,n) = _ :
0 otherwise

Is this function computable?
It’s not as simple as just running the program P on n to see if it terminates
How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might
just need a little more time to finish its computation



Halts @

Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

1 if P halts on input n
halts(P,n) = e I

Is this function computable?
It’s not as simple as just running the program P on n to see if it terminates
How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might
just need a little more time to finish its computation

Thus, we have to do something more clever, analyzing the program itself



Turing




Turing @

Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us



Turing @

Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can
consider halts(Ff, T);in other words, does function T halt when given

itself as an argument? (This is just a thought experiment.)



Turing @

Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can
consider halts(Ff, T);in other words, does function T halt when given

itself as an argument? (This is just a thought experiment.)

We can then define a new function, turing, which takes in 1 argument.



Turing @

Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can
consider halts(Ff, T);in other words, does function T halt when given

itself as an argument? (This is just a thought experiment.)

We can then define a new function, turing, which takes in 1 argument.

def turing(f):
1T halts(f, F):
while True: # infinite loop
pass
else:
return True # halts



Turing @

Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can
consider halts(Ff, T);in other words, does function T halt when given

itself as an argument? (This is just a thought experiment.)

We can then define a new function, turing, which takes in 1 argument.

def turing(f):
1T halts(f, T):

while True: # infinite loop
pass
else:
return True # halts

turing will go into an infinite loop if ¥ halts when given itself as an
argument. Otherwise, turing returns True.



Turing... what?

def turing(f):
1T halts(f, F):
while True: # 1infinite loop
pass
else:
return True # halts



Turing... what?

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts

turing(turing) # * what?



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue
* However, turing(turing) should have halted



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue
* However, turing(turing) should have halted

* turing(turing) halts > halts(turing, turing) returns false



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue
* However, turing(turing) should have halted

* turing(turing) halts > halts(turing, turing) returns false
* However, turing(turing) should not have halted



Turing... what? @

def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue
* However, turing(turing) should have halted

* turing(turing) halts > halts(turing, turing) returns false
* However, turing(turing) should not have halted

We have a contradiction! Our assumption that hal ts exists is false.



Bitstrings and Functions




Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Assume we have the following Python functions:



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Assume we have the following Python functions:

def 1s _valid python function(bitstring):

""" Determine whether or not a bitstring represents a
syntactically valid l-argument Python function.'"



Bitstrings and Functions Qf

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Assume we have the following Python functions:

def 1s _valid python function(bitstring):

""" Determine whether or not a bitstring represents a
syntactically valid l-argument Python function.'"

def bitstring to python_ function(bitstring):

""""Coerce a bitstring representation of a Python
function to the function itself."""



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():
""" Return a stream of all valid l-argument Python
functions.""""



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():
""" Return a stream of all valid l-argument Python
functions.""
bitstring stream = iterator to stream(bitstrings())



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():

--------------------------------------------------

--------------------------------------------------



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():

--------------------------------------------------

bitstring_stream =:iterator_to_stream{bitstrings())

--------------------------------------------------

valid _stream = Tilter stream(is_valid python function,
bitstring stream)



Bitstrings and Functions @

Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():

--------------------------------------------------

bitstring_stream =:iterator_to_stream{bitstrings())

--------------------------------------------------

valid _stream = Tilter stream(is_valid python function,
bitstring stream)

return map stream(bitstring_ to python_ function,
valid_stream)



Filtering Out Non-Terminating Programs @




Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input
But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):
nonlocal 1ndex



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
index += 1



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
index += 1
return True



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
Iindex += 1
return True
return False



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input
But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0O
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
index += 1
return True
return False
return halt_checker



Filtering Out Non-Terminating Programs @

With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0O
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
index += 1
return True
return False
return halt_checker

programs = fTilter stream(make halt checker(),
function_stream())



Developing a Contradiction




Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())

Recall the following function that produces a function that is not in a given
stream:



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())

Recall the following function that produces a function that is not in a given
stream:

def func _not iIn_stream(s):
return lambda n: not s[n](n)



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())

Recall the following function that produces a function that is not in a given
stream:

def func _not iIn_stream(s):
return lambda n: not s[n](n)

Consider the following:



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())

Recall the following function that produces a function that is not in a given
stream:

def func _not iIn_stream(s):
return lambda n: not s[n](n)

Consider the following:

church = func not_iIn_stream(programs)



Developing a Contradiction @

We now have a stream of programs that halt when given their own index as
input

programs = filter stream(make halt checker(),
function_stream())

Recall the following function that produces a function that is not in a given
stream:

def func _not iIn_stream(s):
return lambda n: not s[n](n)

Consider the following:

church = func not_iIn_stream(programs)

Does church appear anywhere in programs?



Developing a Contradiction

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)

Does church appear anywhere in programs?



Developing a Contradiction

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?

Every element in programs halts when given its own index as input



Developing a Contradiction

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func _not In_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programsonn



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

So halt_checker returns true on church, which means that church is
in programs



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

So halt_checker returns true on church, which means that church is
in programs

If church is in programs, it has an index m; so what does church(m) do?



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

If church is in programs, it has an index m; so what does church(m) do?



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

If church is in programs, it has an index m; so what does church(m) do?

It calls the mth element in programs, which is church itself, on m



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

If church is in programs, it has an index m; so what does church(m) do?
It calls the mth element in programs, which is church itself, on m

This results in an infinite loop, which means halt_checker will return false
on church, since it does not halt given its own index



Developing a Contradiction

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)



Developing a Contradiction

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)

We have a contradiction!



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
We have a contradiction!

halt _checker(church) returns true, which means that churchiis in
programs



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
We have a contradiction!

halt _checker(church) returns true, which means that churchiis in
programs

But if church is in programs, then church(m), where mis church’s
index in programs, is an infinite loop, so halt_checker(church)
returns false



Developing a Contradiction @

def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
We have a contradiction!

halt _checker(church) returns true, which means that churchiis in
programs

But if church is in programs, then church(m), where mis church’s
index in programs, is an infinite loop, so halt_checker(church)
returns false

So we made a false assumption somewhere



False Assumption




False Assumption

We assumed we had the following Python functions:



False Assumption

We assumed we had the following Python functions:
* halts



False Assumption

We assumed we had the following Python functions:
* halts
e is valid python function



False Assumption

We assumed we had the following Python functions:
* halts

e i1s valid python function
* bitstring to python function



False Assumption

We assumed we had the following Python functions:
* halts

e i1s valid python function
* bitstring to python function

Everything else we wrote ourselves



False Assumption

We assumed we had the following Python functions:
* halts

e i1s valid python function
* bitstring to python function

Everything else we wrote ourselves

The latter two functions can be built using components of the interpreter



False Assumption @

We assumed we had the following Python functions:
* halts

e is valid python function

* bitstring to python function

Everything else we wrote ourselves
The latter two functions can be built using components of the interpreter

Thus, it is our assumption that there is a Python function that computes halts
that is invalid



False Assumption @

We assumed we had the following Python functions:
* halts

e is valid python function

* bitstring to python function

Everything else we wrote ourselves
The latter two functions can be built using components of the interpreter

Thus, it is our assumption that there is a Python function that computes halts
that is invalid

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise



The Halting Problem




The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.



The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer



The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer

That is, the mathematical function halts is uncomputable



The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer

That is, the mathematical function halts is uncomputable

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise



The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer

That is, the mathematical function halts is uncomputable

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

We proved that halts is uncomputable in Python, but our reasoning applies to
all languages



The Halting Problem @

The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer

That is, the mathematical function halts is uncomputable

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

We proved that halts is uncomputable in Python, but our reasoning applies to
all languages

It is a fundamental limitation of all computers and programming languages



Uncomputable Functions




Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):
delete all print calls from fn



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):
delete all print calls from fn
replace all returns In fn with prints



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):
delete all print calls from fn
replace all returns In fn with prints
return prints_something(fn, 1)



Uncomputable Functions @

It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):
delete all print calls from fn
replace all returns In fn with prints
return prints_something(fn, 1)

Since we know we can’t write hal ts, our assumption that we can write
prints_somethingis false



Consequences




Consequences @

There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs



Consequences @

There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs

The best we can do is approximation



Consequences @

There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible



Consequences @

There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible

® Anti-virus software must either miss some viruses (false negatives), mark

some innocent programs as viruses (false positives), or fail to terminate on
others



Consequences @

There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible

® Anti-virus software must either miss some viruses (false negatives), mark

some innocent programs as viruses (false positives), or fail to terminate on
others

We can’t write perfect security analyzers, optimizing compilers, etc.



Incompleteness Theorem




Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

® We can generate all proofs the same way we generated all programs



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

® We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

® We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer

® Given a finite set of axioms and inference rules, a program can check that
each statement in a proof follows from the previous ones



Incompleteness Theorem @

In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

® We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer

® Given a finite set of axioms and inference rules, a program can check that
each statement in a proof follows from the previous ones

Thus, if a valid proof exists for a mathematical formula, then a computer can
find it



Incompleteness Theorem




Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:



Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

,n) = “progran alts on 1 7
H(P,n) = “program P halts on input »’



Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a

program to prove or disprove it by generating all proofs and checking each
one to see if it proves or disproves H(P, n)



Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a
program to prove or disprove it by generating all proofs and checking each
one to see if it proves or disproves H(P, n)

But then this program would solve the halting problem, which is impossible



Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a

program to prove or disprove it by generating all proofs and checking each
one to see if it proves or disproves H(P, n)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of P and n for which H(P, n) is neither provable
nor disprovable, or for which an incorrect result can be proven



Incompleteness Theorem @

Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a
program to prove or disprove it by generating all proofs and checking each
one to see if it proves or disproves H(P, n)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of P and n for which H(P, n) is neither provable
nor disprovable, or for which an incorrect result can be proven

Thus, there are fundamental limitations not only to computation, but to
mathematics itself!



Interpretation in Python




Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.



Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

eXxec: Executes a statement in the current environment. Doing
so may affect the environment.



Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

eXxec: Executes a statement in the current environment. Doing
so may affect the environment.

eval('2 + 2')



Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

eXxec: Executes a statement in the current environment. Doing
so may affect the environment.

eval('2 + 2')

exec('def square(x): return x * x')



Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

eXxec: Executes a statement in the current environment. Doing
so may affect the environment.

eval('2 + 2')
exec('def square(x): return x * x')

os.system("python <file>"): Directs the operating
system to invoke a new instance of the Python interpreter.



