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Announcements

HW12 due Wednesday

O Scheme project, contest out
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A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

from 1tertools 1mport product

def bitstrings():
size = 0
while True:
tuples = product((°0", "1%), repeat=size)
for elem in tuples:
yield ""_join(elem)
size += 1

>>> [next(bs) for _ in range(0, 10)]
[Il, I@l) l1l, l@@l, I@ll, llel, Illl, l@@@l’ leell, I@l@l]
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A mathematical function f(x) maps elements from its input domain D to its
output range R

f:N—={0,1}, f(z) =2 mod 2

A Python function func computes a mathematical function f if the following
conditions hold:

* func has the same number of parameters as inputs to f
* func terminates on every input in D
® The return value of func(X) is the same as f(x) for all xin D

def func(x):
return (X * x) % 2

A mathematical function f is computable if there exists a program (i.e. a
Python function) func that computes it
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Are all functions computable?
More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it
on our programs to determine if they have infinite loops:

haltsonallinputs : Programs — {0, 1},

1 if P halt 1 inputs
haltsonallinputs(P) = { 1 1alts on all inputs

0 otherwise
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Let’s be less ambitious; we’ll take a program that computes whether or not
another program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

1 if P halts on input n
halts(P,n) = e I

Is this function computable?
It’s not as simple as just running the program P on n to see if it terminates
How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might
just need a little more time to finish its computation

Thus, we have to do something more clever, analyzing the program itself
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Let’s assume that we have a Python function hal ts that computes the
mathematical function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can
consider halts(Ff, T);in other words, does function T halt when given

itself as an argument? (This is just a thought experiment.)

We can then define a new function, turing, which takes in 1 argument.

def turing(f):
1T halts(f, T):

while True: # infinite loop
pass
else:
return True # halts

turing will go into an infinite loop if ¥ halts when given itself as an
argument. Otherwise, turing returns True.
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def turing(f):
1T halts(f, F):

while True: # 1infinite loop
pass
else:
return True # halts
turing(turing) # * what?

If this sounds fishy, it should. Should the call turing(turing) halt or go
into an infinite loop?

e turing(turing) loops =2 halts(turing, turing) returnstrue
* However, turing(turing) should have halted

* turing(turing) halts > halts(turing, turing) returns false
* However, turing(turing) should not have halted

We have a contradiction! Our assumption that hal ts exists is false.
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Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Assume we have the following Python functions:

def 1s _valid python function(bitstring):

""" Determine whether or not a bitstring represents a
syntactically valid l-argument Python function.'"

def bitstring to python_ function(bitstring):

""""Coerce a bitstring representation of a Python
function to the function itself."""
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Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():
""" Return a stream of all valid l-argument Python
functions.""
bitstring stream = iterator to stream(bitstrings())
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Let’s develop another proof, assuming that we have a hal ts program that
computes the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to
filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function_stream():

--------------------------------------------------

bitstring_stream =:iterator_to_stream{bitstrings())

--------------------------------------------------

valid _stream = Tilter stream(is_valid python function,
bitstring stream)

return map stream(bitstring_ to python_ function,
valid_stream)
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def make halt checker():
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But we can filter out programs that don’t halt on a specific input
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def make halt checker():
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With hal ts, we can’t filter out programs that don’t halt on all input

But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting
stream of programs

def make halt checker():
index = 0O
def halt_checker(fn):
nonlocal 1ndex
1T halts(fn, 1ndex):
index += 1
return True
return False
return halt_checker

programs = fTilter stream(make halt checker(),
function_stream())
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church = func not_iIn_stream(programs)
Does church appear anywhere in programs?
Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in
programs onn

If church is in programs, it has an index m; so what does church(m) do?
It calls the mth element in programs, which is church itself, on m

This results in an infinite loop, which means halt_checker will return false
on church, since it does not halt given its own index
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def func _not In_stream(s):
return lambda n: not s[n](n)

church = func not_iIn_stream(programs)
We have a contradiction!

halt _checker(church) returns true, which means that churchiis in
programs

But if church is in programs, then church(m), where mis church’s
index in programs, is an infinite loop, so halt_checker(church)
returns false

So we made a false assumption somewhere
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We assumed we had the following Python functions:
* halts

e is valid python function

* bitstring to python function

Everything else we wrote ourselves
The latter two functions can be built using components of the interpreter

Thus, it is our assumption that there is a Python function that computes halts
that is invalid

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise
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The question of whether or not a program halts on a given input is known as
the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a
computer

That is, the mathematical function halts is uncomputable

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

We proved that halts is uncomputable in Python, but our reasoning applies to
all languages

It is a fundamental limitation of all computers and programming languages
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It gets worse; not only can we not determine programmatically whether or
not a given program halts, we can’t determine anything “interesting” about
the behavior of a program in general

For example, suppose we had a program prints_something that
determines whether or not a given program prints something to the screen
when run on a specific input:

Then we can write hal ts:

def halts(fn, 1):
delete all print calls from fn
replace all returns In fn with prints
return prints_something(fn, 1)

Since we know we can’t write hal ts, our assumption that we can write
prints_somethingis false
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There are vast consequences from the impossibility of computing halts, or any
other sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible

® Anti-virus software must either miss some viruses (false negatives), mark

some innocent programs as viruses (false positives), or fail to terminate on
others

We can’t write perfect security analyzers, optimizing compilers, etc.
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In 1931, Kurt Godel proved that any mathematical system that contains the
theory of non-negative integers must be either incomplete or inconsistent

®* Asystem is incomplete if there are true facts that cannot be proven

® Asystem isinconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

® We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer

® Given a finite set of axioms and inference rules, a program can check that
each statement in a proof follows from the previous ones

Thus, if a valid proof exists for a mathematical formula, then a computer can
find it
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Given a sufficiently powerful mathematical system, we can write the
following formula, which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a
program to prove or disprove it by generating all proofs and checking each
one to see if it proves or disproves H(P, n)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of P and n for which H(P, n) is neither provable
nor disprovable, or for which an incorrect result can be proven

Thus, there are fundamental limitations not only to computation, but to
mathematics itself!
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Interpretation in Python @

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

eXxec: Executes a statement in the current environment. Doing
so may affect the environment.

eval('2 + 2')
exec('def square(x): return x * x')

os.system("python <file>"): Directs the operating
system to invoke a new instance of the Python interpreter.



