CS61A Lecture 37

Amir Kamil

UC Berkeley
April 17, 2013

Announcements

HW11 due tonight

O Scheme project, contest out

O Git help session tonight, 7-9pm in 310 Soda

lterators and Iterables

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence

The iterator interface has two methods:

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence

The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence

® Next prime, etc.

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence

The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence
® Next prime, etc.
* |f nonext, raises Stoplteration exception

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence

® Next prime, etc.
* |f nonext, raises Stoplteration exception

An iterable is a container that providesan ___1ter__ method

lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

* 1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence

® Next prime, etc.
* |f nonext, raises Stoplteration exception

An iterable is a container that providesan ___1ter__ method

e 1ter__ (sel¥f) returns an iterator over the elements in the
container

Generator Functions

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Generator Functions

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Generator Functions

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a y1eld is reached

Generator Functions @

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a y1eld is reached

The yielded value is returned by next, and execution of the body is halted
until the next call to next

Generator Functions @

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a y1eld is reached

The yielded value is returned by next, and execution of the body is halted
until the next call to next

When execution reaches the end of the body, a Stoplteration s raised

Iterating over an Rlist

Iterating over an Rlist @

We can iterate over a sequence even ifithasno __ 1ter__ method

Iterating over an Rlist @

We can iterate over a sequence even ifithasno __ 1ter__ method

Python uses _getitem instead, iterating until IndexXError is raised

Iterating over an Rlist @

We can iterate over a sequence even ifithasno __ 1ter__ method

Python uses _getitem instead, iterating until IndexXError is raised

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

Iterating over an Rlist @

We can iterate over a sequence even ifithasno __ 1ter__ method

Python uses _getitem instead, iterating until IndexXError is raised

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

How long does it take to iterate over an R 1St of n items?

Iterating over an Rlist @

We can iterate over a sequence even ifithasno __ 1ter__ method

Python uses _getitem instead, iterating until IndexXError is raised

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

How long does it take to iterate over an RISt of n items? @(7’12)

Iterating over an Rlist

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

def 1ter_ (self):

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first

IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:
yield current.first

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:
yield current.first
current = current.rest

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:
yield current.first
current = current.rest

How long does it take to iterate over an R 1St of n items?

Iterating over an Rlist @

We can define an iterator for R 1Sts using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def _ getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:
yield current.first
current = current.rest

How long does it take to iterate over an RISt of n items? @(n)

Infinite Sequences with Selection @

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators

Such sequences may be infinite, and they might be lazily evaluated

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence

>>> list(fib_generator())

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!

A l1st provides immediate access to all elements

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!
A l1st provides immediate access to all elements

But an RISt only provides immediate access to its first element

Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!
A l1st provides immediate access to all elements
But an RISt only provides immediate access to its first element

The rest can be computed lazily!

Streams

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list
class Stream(RIist):

""" A lazily computed recursive list.
def __init__ (self, first,

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __init_(self, first,
compute rest=lambda: Stream.empty):

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
self. compute rest = compute_rest

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
self. compute rest = compute_rest
self. rest = None

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None

\k “Please don't reference directly”)

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None

ro ert"..". . ”
@property \k “Please don't reference directly)

Streams @

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""
iIT self. _compute_rest i1s not None:

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()
self. _compute rest = None

“Please don't reference directly”)

Streams Qf

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""""'A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
"""""'Return the rest of the stream, computing 1t 1If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()
self. _compute rest = None
return self. rest

“Please don't reference directly”)

Integer Streams

Integer Streams @

An integer stream is a stream of consecutive integers

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_stream(first=1):

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1
def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

>>> s = Integer_stream(3)

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

>>> s = Integer_stream(3)
>>> s_first

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

>>> s = Integer_stream(3)
>>> s_first
3

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting

with firrst.
>>> s = Integer_stream(3)
>>> s_FfiIrst

>>> s_rest.first

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting

with firrst.
>>> s = Integer_stream(3)
>>> s_FfiIrst

>>> s_rest.first
4

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting

with firrst.
>>> s = Integer_stream(3)
>>> s_FfiIrst

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1
def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

nteger_stream(3)

def compute rest():

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

nteger_stream(3)

def compute rest():
return integer_ stream(first+l)

Integer Streams @

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

nteger_stream(3)

def compute rest():
return integer_ stream(first+l)
return Stream(first, compute rest)

Mapping a Function over a Stream @

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map stream(fn, s):

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.
IT s Is Stream.empty:

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.
IT s Is Stream.empty:
return s

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.
IT s Is Stream.empty:
return s

def compute rest():

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.
IT s Is Stream.empty:
return s

def compute rest():
return map_ stream(fn, s.rest)

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):
""" Map fn over the elements of stream s.
IT s Is Stream.empty:
return s

def compute rest():
return map_ stream(fn, s.rest)

return Stream(fn(s.first), compute rest)

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):

""" Map fn over the elements of stream s.

IT s Is Stream.empty:
return s

This body is not executed until
compute restis called

def compute rest():

--

* *
--

return Stream(fn(s.first), compute rest)

Mapping a Function over a Stream @

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):

""" Map fn over the elements of stream s.

IT s Is Stream.empty:
return s

This body is not executed until
compute restis called

def compute rest():

--

* *
--

return Stream(fn(s.first), compute rest)
A

[Not called yet]

Filtering a Stream

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output
def filter_stream(fn, s):

""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)
IT fn(s.first):

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)
IT fn(s.first):
return Stream(s.first, compute rest)

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)
IT fn(s.first):
return Stream(s.first, compute rest)
else:

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)
IT fn(s.first):
return Stream(s.first, compute rest)
else:
return compute_rest()

Filtering a Stream @

When filtering a stream, processing continues until an element is
kept in the output

def filter_stream(fn, s):
""" Filter stream s with predicate function fn.
IT s 1s Stream.empty:
return s
def compute _rest():
return filter stream(fn, s.rest)
IT fn(s.first):
return Stream(s.first, compute rest)
else:
return compute_rest()

/\
Find an element in the
rest of the stream

A Stream of Primes

A Stream of Primes

The stream of integers not divisible by any k <=n is:

A Stream of Primes

The stream of integers not divisible by any k <=n is:

®* The stream of integers not divisible by any k < n,

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,

® Filtered to remove any element divisible by n

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
-~

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, 3,\4\ 5,\6\ 7,\8\9, }% 11, }\1{ 13

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5,\6\ 7,\8\9, }% 11, }\1{ 13

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):
------ Return a stream of primes, given a stream of
consecutive i1ntegers.''"

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):
""" Return a stream of primes, given a stream of
consecutive i1ntegers.''"
def compute rest():

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):
""" Return a stream of primes, given a stream of
consecutive i1ntegers.''"
def compute rest():

not _divisible = lambda x: X % i1stream.first 1= 0

A Stream of Primes @

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):
""" Return a stream of primes, given a stream of
consecutive i1ntegers.''"
def compute rest():
not _divisible = lambda x: X % i1stream.first 1= 0
return primes(filter stream(not_divisible,
Istream.rest))

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, i,\ 5, By 7, By W 1o, 11, 12, 13

def primes(istream):
""" Return a stream of primes, given a stream of
consecutive i1ntegers.''"
def compute rest():
not _divisible = lambda x: X % i1stream.first 1= 0
return primes(filter stream(not_divisible,

Istream.rest))
return Stream(istream.first, compute rest)

Function Streams

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not sn

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not sn

[F]T T T T F T F T F
TI[TIF F F F F T F T
T FIT]F T F T F T T
T F F[T]IT F F T F T
T F T TI[F]T F T F T
F F F F T[FIF F T T
T FTFFFI[F]T T T
F T F T TF TI[F]F T
T FTFFTTFIFIT
F T T TTTT T TI[F]

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not sn

[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T] T F F T F T
T F T T[F] T F T F T
F F F F T[F]F F T T
T F TF F F[F]T T T
F T F T T F TI[F]JF T
T F TF F T T FIF]T
Functions F T T T T T T T T [F]

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not sn

Inputs
[F]T T T T F T F T F
T[T]JF F F F F T F T
T FI[T]F T F T F T T
T F F[T]T F F T F T
T F T T[F]T F T F T
F F F F T[FIJF F T T
T F TFF F[F]T T T
F T F T T F TI[F]F T
T F TFF TTFIF]T
Functions F T T T T T T T TI[F]

Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not sn

Inputs
[F]T T T T F T F T F
T[T]JF F F F F T F T
T FI[T]F T F T F T T
T F F[T]T F F T F T
T F T T[F]T F T F T
F F F F T[FIJF F T T
T F TFF F[F]T T T
F T F T T F TI[F]F T
T F TFF TTFIF]T
Functions F T T T T T T T TI[F]

T™ F F F T T T T T T

