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Announcements

HW11 due tonight

O Scheme project, contest out

O Git help session tonight, 7-9pm in 310 Soda
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lterators and Iterables @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence
The iterator interface has two methods:

*  1ter__ (sel¥) returns an equivalent iterator

® Recite prime numbers.

e next (sel¥f) returns the next element in the sequence

® Next prime, etc.
* |f nonext, raises Stoplteration exception

An iterable is a container that providesan ___1ter__ method

e 1ter__ (sel¥f) returns an iterator over the elements in the
container
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Generator Functions @

def Tib_generator():
yield O
prev, current = 0, 1
whille True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a y1eld is reached

The yielded value is returned by next, and execution of the body is halted
until the next call to next

When execution reaches the end of the body, a Stoplteration s raised
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We can iterate over a sequence even ifithasno __ 1ter__ method

Python uses _getitem  instead, iterating until IndexXError is raised

class Rlist(object):
def init (self, first, rest=empty):
self_first, self.rest = first, rest

def getitem_ (self, k):
1T k == O:
return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)
return self.rest[k — 1]

How long does it take to iterate over an RISt of n items? @(7’12)
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return self_first
IT self.rest is Rlist.empty:
raise IndexError("index out of range-®)

return self.rest[k — 1]

def 1ter_ (self):
current = self
while current is not Rlist.empty:
yield current.first
current = current.rest

How long does it take to iterate over an RISt of n items? @(n)



Infinite Sequences with Selection @




Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators

Such sequences may be infinite, and they might be lazily evaluated



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence

>>> list(fib_generator())



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!

A l1st provides immediate access to all elements



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!
A l1st provides immediate access to all elements

But an RISt only provides immediate access to its first element



Infinite Sequences with Selection @

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated

What if we want to support element selection on infinite sequences?

Let’s try creating a 1 1St out of an infinite sequence
>>> list(fib _generator())

Oops! Infinite loop!
A l1st provides immediate access to all elements
But an RISt only provides immediate access to its first element

The rest can be computed lazily!
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class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
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A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()
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A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""" A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
""" Return the rest of the stream, computing 1t If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()
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A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(RIist):
""""'A lazily computed recursive list.
def __1nit (self, fTirst,
compute rest=lambda: Stream.empty):
assert callable(compute rest)
self._first = first
selfT..compute_rest = compute_rest
self. rest = None
@property-
def rest(self)\
"""""'Return the rest of the stream, computing 1t 1If
necessary.'"""
iIT self. _compute_rest i1s not None:
self. rest = self. compute_rest()
self. _compute rest = None
return self. rest

“Please don't reference directly” )
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def integer_ stream(first=1):
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An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer_ stream(first=1):
""" Return a stream of consecutive iIntegers, starting
with first.

nteger_stream(3)

def compute rest():
return integer_ stream(first+l)
return Stream(first, compute rest)
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Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map_stream(fn, s):

""" Map fn over the elements of stream s.

IT s Is Stream.empty:
return s

This body is not executed until
compute restis called

def compute rest():

------------------------------------------------------------------------------------------

* *
------------------------------------------------------------------------------------------

return Stream(fn(s.first), compute rest)
A

[ Not called yet ]
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The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k < n,
®* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes
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def primes(istream):
""" Return a stream of primes, given a stream of
consecutive i1ntegers.''"
def compute rest():
not _divisible = lambda x: X % i1stream.first 1= 0
return primes(filter stream(not_divisible,

Istream.rest))
return Stream(istream.first, compute rest)




Function Streams




Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate



Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)



Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

[F]T T T T F T F T F
TI[TIF F F F F T F T
T FIT]F T F T F T T
T F F[T]IT F F T F T
T F T TI[F]T F T F T
F F F F T[FIF F T T
T FTFFFI[F]T T T
F T F T TF TI[F]F T
T FTFFTTFIFIT
F T T TTTT T TI[F]



Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T] T F F T F T
T F T T[F] T F T F T
F F F F T[F]F F T T
T F TF F F[F]T T T
F T F T T F TI[F]JF T
T F TF F T T FIF]T
Functions F T T T T T T T T [F]



Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

Inputs
[F]T T T T F T F T F
T[T]JF F F F F T F T
T FI[T]F T F T F T T
T F F[T]T F F T F T
T F T T[F]T F T F T
F F F F T[FIJF F T T
T F TFF F[F]T T T
F T F T T F TI[F]F T
T F TFF TTFIF]T
Functions F T T T T T T T TI[F]



Function Streams @

Given a stream of 1-argument functions, we can construct a function that is
not in the stream, assuming that all functions in the stream terminate

def func_not iIn_stream(s):
return lambda n: not s[n](n)

Inputs
[F]T T T T F T F T F
T[T]JF F F F F T F T
T FI[T]F T F T F T T
T F F[T]T F F T F T
T F T T[F]T F T F T
F F F F T[FIJF F T T
T F TFF F[F]T T T
F T F T T F TI[F]F T
T F TFF TTFIF]T
Functions F T T T T T T T TI[F]

T™ F F F T T T T T T



