CS61A Lecture 36

Soumya Basu

UC Berkeley
April 15, 2013

Announcements @

0O HW11 due Wednesday

O Scheme project, contest out

Our Sequence Abstraction @

Recall our previous sequence interface:
® Asequence has a finite, known length
* Asequence allows element selection for any element

In most cases, satisfying the sequence interface requires storing the
entire sequence in a computer's memory

Problems?
* Infinite sequences- primes, positive integers

® Really large sequences- all Twitter posts, votes in a presidential
election

The Sequence of Primes @

Think about the sequence of prime numbers:
® What's the first one?

® The next one?

® The next one?

® How about the next two?

® How about the 105" prime?

® Our sequence abstraction would give an instant answer

Implicit Sequences @

® We compute each of the elements on demand.
® Don't explicitly store each element

® Called an implicit sequence.

A Python Example @

Example: The range class represents a regular sequence of
integers

® The range is represented by three values: start, end, and step
® The length and elements are computed on demand
® Constant space for arbitrarily long sequences

end — start
—_ .0

length = max
step

elem(k) = start + k- step (for k € [0, length))

A Range Class @

class Range(object):
def __init__(self, start, end=None, step=1):
if end is None:
start, end = 0, start
self.start = start
self.end = end
self._step = step

def __len_ (self):
return max(0, ceil((self.end - self.start) /
self.step))

def _ getitem__(self, k):
if k <0:
k = len(self) + k
if k <0 or k >= len(self):
raise IndexError("index out of range®)
return self.start + k * self.step

The Iterator Interface @

An iterator is an object that can provide the next element of a (possibly
implicit) sequence

The iterator interface has two methods:

* _ iter__(self) returns an equivalent iterator.

® Recite prime numbers.

¢ _ next__(self) returns the next element in the sequence
® Next prime, etc.
* If no next, raises Stop I teration exception.

Rangelter @

class Rangelter(object):
def __init__(self, start, end, step):
self.current = start
self.end = end
self.step = step
self.sign = 1 if step > 0 else -1

def __next__(self):
if self.current * self.sign >= self.end * self.sign:
raise Stoplteration
result = self.current
self.current += self._step
return result

def __iter__(self):
return self

Fibonacci @

The For Statement @

for <name> in <expression>:
<suite>
1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>
An iterable object has a method __iter___that returns an iterator

>>> nums, sum = [1, 2, 3], ©
>>> items = nums.__iter_ ()

>>> nums, sum = [1, 2, 3], @ >>> try:
>>> for item in nums: while True:
sum += item item = items.__next_ ()
sum += item
> :
6>> sum except StopIteration:
pass

>>> sum

class Fiblter(object):
def __init__(self):

self.prev = -1
self.current = 1

def _ next_ (self):
self.prev, self.current = (self.current,

self.prev + self.current)
return self._current

def __iter__(self):
return self

Generators and Generator Functions @

Generators:

® Aniterator backed by a function, called a generator function.

Generator Functions:
* A function that returns a generator.
® Can tell by looking for the yield keyword.

® Another example of a continuation

Fibonacci Generator @

Generator Semantics @

A generator function that lazily computes the Fibonacci sequence:

def fib_generator():
yield 0
prev, current = 0, 1
while True:
yield current
prev, current = current, prev + current

A generator expression is like a list comprehension, but it
produces a lazy generator rather than a list:

double_fibs = (fib * 2 for fib in fib_generator())

def fib_generator():
yield 0
prev, current = 0, 1
while True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a yield is reached

The yielded value is returned by next, and execution of the body is halted
until the next call to next

When execution reaches the end of the body, a Stoplteration is raised

Map and Filter @

Bitstring Generator @

def map_gen(fn, iterable):
iterator = iter(iterable)
while True:
yield fn(next(iterator))

def filter_gen(fn, iterable):
iterator = iter(iterable)
while True:
item = next(iterator)
it fn(item):
yield item

from itertools import product

def bitstringsQ:
"""Generate bitstrings in order of increasing
size.

>>> bs = bitstrings()
>>> [next(bs) for _ in range(0, 8)]
-, *o*, =1*, "00", "01%, "10", "11%, "000"]

size = 0
while True:
tuples = product(("0", "1%), repeat=size)
for elem in tuples:
yield ""_join(elem)
size += 1

