CS61A Lecture 33

Amir Kamil

UC Berkeley
April 8, 2013



Announcements @

Hog revisions due tonight

O HW10 due Wednesday

O Last chance to fill out survey on Piazza

We need to schedule alternate final exam times for those
who have a conflict, so if you do, let us know on the survey
when you are available



Programming Languages




Programming Languages @

Computers have software written in many different languages



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware

® All data are represented as a sequence of bits



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details

®* Primitive data types beyond just bits



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits

® Statements/expressions, data can be non-primitive (e.g. calls)



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits
® Statements/expressions, data can be non-primitive (e.g. calls)

® Evaluation process is defined in software, not hardware



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits
® Statements/expressions, data can be non-primitive (e.g. calls)

® Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages



Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits
® Statements/expressions, data can be non-primitive (e.g. calls)

® Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

Machine
Language




Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits
® Statements/expressions, data can be non-primitive (e.g. calls)

® Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

Machine
Language




Programming Languages @

Computers have software written in many different languages

Machine languages: statements can be interpreted by hardware
® All data are represented as a sequence of bits

® All statements are primitive instructions

High-level languages: hide concerns about those details
®* Primitive data types beyond just bits
® Statements/expressions, data can be non-primitive (e.g. calls)

® Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

Machine

language C Python




Metalinguistic Abstraction




Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)



Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)

flx)=a* -2z +1



Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)

flx)=a* -2z +1



Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)

flx)=a* -2z +1

In computer science, languages can be implemented:



Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)

flx)=a* -2z +1

In computer science, languages can be implemented:

® An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression



Metalinguistic Abstraction @

Metalinguistic abstraction: Establishing new technical languages
(such as programming languages)

flx)=a* -2z +1

In computer science, languages can be implemented:

® An interpreter for a programming language is a function that,

when applied to an expression of the language, performs the
actions required to evaluate that expression

® The semantics and syntax of a language must be specified
precisely in order to build an interpreter



The Scheme-Syntax Calculator Language @




The Scheme-Syntax Calculator Language @

A subset of Scheme that includes:

eNumber primitives
® Built-in arithmetic operators: +, -, *, /

® Call expressions



The Scheme-Syntax Calculator Language @

A subset of Scheme that includes:

eNumber primitives
® Built-in arithmetic operators: +, -, *, /

® Call expressions

> (+ (* 3 5) (- 10 6))

19
> (+ (* 3
(+ (* 2 4)
(+ 3 5)))
(+ (- 10 7)
6))

57



Syntax and Semantics of Calculator @




Syntax and Semantics of Calculator @

Expression types:



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments

® The - operator returns either



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments

® The - operator returns either
e the additive inverse of a single argument, or



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments
® The - operator returns either

e the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments
® The - operator returns either

e the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

® The * operator returns the product of its arguments



Syntax and Semantics of Calculator @

Expression types:
® A call expression is a Scheme list
® A primitive expression is an operator symbol or number

Operators:
® The + operator returns the sum of its arguments
® The - operator returns either

e the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

® The * operator returns the product of its arguments

®* The / operator returns the real-valued quotient of a dividend
and divisor (i.e. a numerator and denominator)



Reading Scheme Lists




Reading Scheme Lists @

A Scheme list is written as elements in parentheses:



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

(<element 0> <element 1> ... <element _n>)



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

i [ A recursive
. (<element_0> <element_1> ... <element_n>) :

Scheme list

g
.
--------------------------------------------------------------------------------------------------------------------




Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

L [ A recursive
. (kelement_0>) <element_1> ... <element_n>) :

. i1 Scheme list

--------------------------------------------------------------------------------------------------------------------




Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

---------------------------------------------------------------------------------------------------------------------

A recursive
(m kelement 1> <element n>))

Scheme list

--------------------------------------------------------------------------------------------------------------------




Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

---------------------------------------------------------------------------------------------------------------------

A recursive
(m kelement 1> <element n>))

Scheme list

--------------------------------------------------------------------------------------------------------------------

Each <element> can be a combination or primitive



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

---------------------------------------------------------------------------------------------------------------------

A recursive
(m kelement 1> <element n>))

Scheme list

--------------------------------------------------------------------------------------------------------------------

Each <element> can be a combination or primitive

(+ (*3(H+(*24) (+35))) (+(-107)6))



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

i ——— (" A recursive
: (kelement _0>) kelement 1> ... <element n>) : :
: | Scheme list

U
*

-
--------------------------------------------------------------------------------------------------------------------

Each <element> can be a combination or primitive
(+ (*3 (+(*24) (+35))) (+(-107)6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

---------------------------------------------------------------------------------------------------------------------

: J A recursive
: (kelement 0>) kelement 1> ... <element n>) : :
S —— T ———————— - | Scheme list

U
*

Each <element> can be a combination or primitive
(+ (*3 (+(*24) (+35))) (+(-107)6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself

Parsers must validate that expressions are well-formed



Reading Scheme Lists @

A Scheme list is written as elements in parentheses:

---------------------------------------------------------------------------------------------------------------------

: J A recursive
: (kelement 0>) kelement 1> ... <element nd>) : .
: | Scheme list

g
.
--------------------------------------------------------------------------------------------------------------------

Each <element> can be a combination or primitive
(+ (*3 (+(*24) (+35))) (+(-107)6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself

Parsers must validate that expressions are well-formed

(http://inst.eecs.berkeley.edu/~cs61a/sp13/projects/scalc/scheme reader.py.html)




Parsing




Parsing @

A parser takes a sequence of lines and returns an expression.



Parsing @

A parser takes a sequence of lines and returns an expression.

lines expression



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical

lines expression

analysis



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical

lines tokens expression

analysis




Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines tokens expression

analysis analysis



Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis

l(+ 1I
(- 23)°
(* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis

l(+ 1I
] (_ 23)! }
' (* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis

"(+ 1 (', '+', 1
- 2y }
' (* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis

'(+ 1' l(l, l+l, 1
] (_ 23)! } |(|, l_l, 23, l)l
' (* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

|(‘:'._.1l '(', '+', 1
"(' 23)' } '(l) -, 23, ')'
* 7 (* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

'(:': 1' 1 l, |+|, 1
"(_23)' (', "-', 23, ")

' (* 4 5.6))"



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(:': 1' 1 l, |+|, 1
"(_23)' (', "-', 23, ")

orase) T e 45, )y, )



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(:': 1' [ ] l, l+l, 1
(-3 ", '-', 23, ')
! * 4:‘ ° .: ! ] | 1 ] | | | |

( 56)) ) * , 4, 5.6, ) ) )



Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(:': 1' [ ] l, l+l, 1
N H-i23)" (s -ty 23, )
! * 4:‘ ° ‘: ! ] | | | ] | | | |

( 56)) ) * , 4, 5.6, ) ) )

/\
~ :
® [terative process

~




Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(:': 1' 1 l, l+l, 1
CiCEn ) e s
] sk :‘ ‘. ]

( 4“.5"0"6")) 1 l, l*l, 4, 5.6, I)l, l)l

/\
~ :
® [terative process

~

® Checks for malformed tokens




Parsing

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(+ 1' l(l, l+l, 1
"('23)' '(l: "': 23: ')'
' (* 4i5.6))"

/\

\_

¢ :

® [terative process
® Checks for malformed tokens
® Determines types of tokens

(af




Parsing @

A parser takes a sequence of lines and returns an expression.

Lexical Syntactic

lines expression

analysis analysis

l(+ 1' l(l, l+l, 1
28 ot 23, )
' (* 4i5.6))"

~—tterative-process ~
® Checks for malformed tokens

® Determines types of tokens

® Processes one line at a time
\_ Yy,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
l(+ 1' l(l, l+l, 1
g } €,y }
LA T e, e, 4,508, ), )
~—tterative-process ~

® Checks for malformed tokens
® Determines types of tokens

® Processes one line at a time
\_ Yy,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
"(+ 1 (', '+', 1 Pair('+', Pair(1, ...))
g } € 3,0y }
(F42:8)° T v, %, a, 55, ), )
~—tterative-process ~

® Checks for malformed tokens
® Determines types of tokens

® Processes one line at a time
\_ Yy,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines . tokens ] expression
analysis analysis
"(+ 1 (', '+', 1 Pair('+', Pair(1, ...))
'( - 23)' } (', "-', 23, ")’ } printed as
(* 4i5.6))"

....... "(', '*', 4, 5.6, ')', ")’

~—tterative-process ~

® Checks for malformed tokens

(+1 (- 23) (* 4 5.6))

® Determines types of tokens

® Processes one line at a time
\_ Yy,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
"(+ 1 (', '+', 1 Pair('+', Pair(1, ...))
-y } JORMIFERD } printed as
Co(*4i5.6))° (', '*', 4, 5.6, '), ') (+ 1 (- 23) (* 4 5.6))
. /\
~—tterative-process N\

®* Tree-recursive process
® Checks for malformed tokens

® Determines types of tokens

® Processes one line at a time
\_ J L Y,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
"(+ 1 (', '+', 1 Pair('+', Pair(1, ...))
-y } JORMIFERD } printed as
Co(*4i5.6))° (', '*', 4, 5.6, '), ') (+ 1 (- 23) (* 4 5.6))
. /\
~—tterative-process N\

®* Tree-recursive process
® Checks for malformed tokens e Bal th
. alances parentheses
® Determines types of tokens

® Processes one line at a time
\_ J L Y,




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
"(+ 1 (', '+', 1 Pair('+', Pair(1, ...))
-y } JORMIFERD } printed as
Co(*4i5.6))° (', '*', 4, 5.6, '), ') (+ 1 (- 23) (* 4 5.6))
. /\
~—tterative-process N\

®* Tree-recursive process
®* Checks for malformed tokens
. ® Balances parentheses
® Determines types of tokens
_ _ ® Returns tree structure
® Processes one line at a time

\_ /0 J




Parsing @

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic ,
lines : tokens ] expression
analysis analysis
'(f.l' ) (', '+', 1 Pair('+', Pair(1, ...))
.(- 23)' } (', '-', 23, ") } printed as
(* 4i5.6)) (', '*', 4, 5.6, '), ") (+ 1 (- 23) (* 4 5.6))
~—tterative-process ~ A Tre@-recursiveprocess——
® Checks for malformed tokens ® Balances parentheses
® Determines types of tokens ® Returns tree structure
® Processes one line at a time ® Processes multiple lines

\_ /0 J




Syntactic Analysis




Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers

Recursive call: scheme read sub-expressions and combine
them as pairs



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l"": 1, l(': "l: 23, ')lJAI(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers

Recursive call: scheme read sub-expressions and combine
them as pairs



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers

Recursive call: scheme read sub-expressions and combine
them as pairs



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

l(': l+': 1, l(': "l: 23, I)lJ '(': l*': 4, 5.6, ')lJ ')l

Base case: symbols and numbers

Recursive call: scheme read sub-expressions and combine
them as pairs



Syntactic Analysis @

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for
exactly one expression.

Base case: symbols and numbers

Recursive call: scheme read sub-expressions and combine
them as pairs

(http://inst.eecs.berkeley.edu/~cs61a/sp13/projects/scalc/scheme reader.py.html)




Expression Trees




Expression Trees @

A basic interpreter has two parts: a parser and an evaluator



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

Parser



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

Parser Evaluator




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

Parser Evaluator




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser Evaluator




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser Evaluator

"(+ 2 2)°




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator

"(+ 2 2)°




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil))




Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil))



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4

(* (+ 1
1 (_ 23)!

(* 4 5.6))°
10)°



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
1 (_ 23)!

printed as

(* 4 5.6))°
- (* (+1 (- 23) (* 4 5.6)) 10)

10)



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
g; 23; 6))’ printed as 4

10) (* (+1 (- 23) (* 4 5.6)) 10)



Expression Trees Qf

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
g; 4213;.6))’ printed as 4
10)" (*(+1 (- 23) (* 4 5.6)) 10)

Lines forming a
Scheme expression



Expression Trees @

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
g; 4213;.6))’ printed as 4
10)" (*(+1 (- 23) (* 4 5.6)) 10)

Lines forming a A number or a Pailr with an
Scheme expression operator as its first element



Expression Trees @

A basic interpreter has two parts: a parser and an evaluator

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
g; 4213;.6))’ printed as 4
10)" (*(+1 (- 23) (* 4 5.6)) 10)

Lines forming a A number or a Pailr with an

. L A number
Scheme expression operator as its first element



Expression Trees @

A basic interpreter has two parts: a parser and an evaluator

scheme_reader.py

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
g; 4213;.6))’ printed as 4
10)" (*(+1 (- 23) (* 4 5.6)) 10)

Lines forming a A number or a Pailr with an

. L A number
Scheme expression operator as its first element



Expression Trees @

A basic interpreter has two parts: a parser and an evaluator

scheme_reader.py scalc.py

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
(* (+ 1 Pair('*', Pair(Pair(+, ...))
' g; 4213;.6))’ printed as 4
' 10)" (*(+1 (- 23) (* 4 5.6)) 10)

Lines forming a A number or a Pailr with an
Scheme expression operator as its first element

A number



Evaluation




Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule



Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly



Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:



Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:
® Evaluate each operand expression



Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:
® Evaluate each operand expression
® (Collect their values as a list of arguments



Evaluation @

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:

® Evaluate each operand expression

® (Collect their values as a list of arguments

®* Apply the named operator to the argument list



Applying Operators




Applying Operators @

Calculator has a fixed set of operators that we can enumerate



Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):



Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

iIT operator == "+7:

return ...



Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

it tor == "+°: :
T operato {Dlspatch on operator namej
return ...




Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

it tor == "+°: :
T operator {Dlspatch on operator namej
return ...

iIT operator == "-":



Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

it tor == "+°: :
T operator {Dlspatch on operator namej
return ...

iIT operator == "-":

(http://inst.eecs.berkeley.edu/~cs61a/sp13/projects/scalc/scalc.py.html)




Raising Application Errors




Raising Application Errors @

The — and / operators have restrictions on argument number



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):



Raising Application Errors

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.



Raising Application Errors

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.

iIT operator == "-":



Raising Application Errors

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.

iIT operator == "-":
iT len(args) == O:



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) == O:
raise TypeError(operator + requires " +
"at least 1 argument™)



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) == O:
raise TypeError(operator + requires " +
"at least 1 argument™)



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) == O:
raise TypeError(operator + requires " +
"at least 1 argument™)

1T operator == "/":



Raising Application Errors @

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) ==
raise TypeError(operator + requires " +
"at least 1 argument™)

1T operator == "/":
1T len(args) I=



Raising Application Errors Qf

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) ==
raise TypeError(operator + requires " +
"at least 1 argument™)

iIT operator == "/":

1T len(args) !I=
raise TypeError(operator + requires " +
"exactly 2 arguments”)



Raising Application Errors Qf

The — and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(operator, args):
""" Apply the named operator to a list of args.
iIT operator == "-":
1T len(args) ==
raise TypeError(operator + requires " +
"at least 1 argument™)

iIT operator == "/":

1T len(args) !I=
raise TypeError(operator + requires " +
"exactly 2 arguments”)



Read-Eval-Print Loop




Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which



Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,



Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,

® Parses the input to build an expression tree,



Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,
® Parses the input to build an expression tree,

® Evaluates the expression tree,



Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,
® Parses the input to build an expression tree,
® Evaluates the expression tree,

® Prints the resulting value of the expression



Read-Eval-Print Loop @

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,
® Parses the input to build an expression tree,
® Evaluates the expression tree,

® Prints the resulting value of the expression

The REPL handles errors by printing informative messages for
the user, rather than crashing



Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

® Reads an expression from the user,
® Parses the input to build an expression tree,
® Evaluates the expression tree,

® Prints the resulting value of the expression

The REPL handles errors by printing informative messages for
the user, rather than crashing

A well-designed REPL should not crash on any input!



