
CS61A Lecture 32

Amir Kamil
UC Berkeley
April 5, 2013

 Hog revisions due Monday

 HW10 due Wednesday

 Make sure to fill out survey on Piazza
We need to schedule alternate final exam times for those

who have a conflict, so if you do, let us know on the survey
when you are available

Announcements

The Begin Special Form

(define (repeat k fn)
 (if (> k 0)
 (begin (fn) (repeat (- k 1) fn))
 'done))

(define (tri fn)
 (repeat 3 (lambda () (fn) (lt 120))))

(define (sier d k)
 (tri (lambda () (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
 (sier (/ d 2) (- k 1)) (penup) (fd d) (pendown))

(begin <exp1> <exp2> ... <expn>)

Begin expressions allow sequencing

Handling Errors (Back to Python)

Sometimes, computers don't do exactly what we expect
• A function receives unexpected argument types
• Some resource (such as a file) is not available
• A network connection is lost

September 9 1947: Moth found in a Mark II Computer

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

Exceptions are objects! They have classes with constructors

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from h to f
without waiting for g to return

However, exception handling tends to be slow

Mastering exceptions:

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled in
production systems

python3 -O

"O" stands for optimized. Among other things, it disables
assertions

Whether assertions are enabled is governed by the built-in bool
__debug__

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are just
instances of classes that inherit from BaseException
TypeError -- A function was passed the wrong number/type of
argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Try Statements

Try statements handle exceptions

Execution rule:
• The <try suite> is executed first;
• If, during the course of executing the <try suite>,

an exception is raised that is not handled otherwise, and
• If the class of the exception inherits from <exception class>, then
• The <except suite> is executed, with <name> bound to the

exception

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

Multiple try statements: Control jumps to the except suite of the
most recent try statement that handles that type of exception.

WWPD: What Would Python Do?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
 invert_safe(0)
 except BaseException:
 print('Handled!')

>>> inverrrrt_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

	CS61A Lecture 29
	Announcements
	The Begin Special Form
	Handling Errors (Back to Python)
	Exceptions
	Assert Statements
	Raise Statements
	Try Statements
	Handling Exceptions
	WWPD: What Would Python Do?

