
CS61A Lecture 31

Amir Kamil
UC Berkeley
April 3, 2013

 HW9 due tonight

 Ants extra credit due tonight
 See Piazza for submission instructions

 Hog revisions out, due Monday

 HW10 out tonight

Announcements

Pairs

Scheme has built-in pairs that use weird names:

• cons: Two-argument procedure that creates a pair

• car: Procedure that returns the first element of a pair

• cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, enclosed in
parentheses

> (cons 1 2)
(1 . 2)
> (car (cons 1 2))
1
> (cdr (cons 1 2))
2

Recursive Lists

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
• nil is the empty list
• A non-empty Scheme list is a pair in which the second element

is nil or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> x
(1 2 3 4)
> (cdr x)
(2 3 4)
> (cons 1 (cons 2 (cons 3 4)))
(1 2 3 . 4) Not a well-formed list!

Symbolic Programming

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(1 2)

Quotation prevents something from being evaluated by Lisp

No sign of “a” and “b” in the
resulting value

> (list 'a 'b)
(a b)
> (list 'a b)
(a 2)

Quotation can also be applied to combinations to form lists
> (car '(a b c))
a
> (cdr '(a b c))
(b c)

Symbols are now values

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '(1 2 . 3)
(1 2 . 3)
> '(1 2 . (3 4))
(1 2 3 4)
> '(1 2 3 . nil)
(1 2 3)

What is the printed result of evaluating this expression?
> (cdr '((1 2) . (3 4 . (5))))
(3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

The Let Special Form

1 2 3 4 5 6 7

(define (filter fn s)
 (if (null? s)
 s
 (let ((first (car s))
 (rest (filter fn (cdr s))))
 (if (fn first)
 (cons first rest)
 rest))))

(let ((<name> <exp>) ...) <body>)

> (filter even? '(1 2 3 4 5 6 7))
(2 4 6)

Let expressions introduce a new frame, with the given bindings

Quick Sort

7 8 5 6 1 3 9

7 8 5 6 1 3 9

7 8 5 6 1 3

7 8

5 7 8 6

Quick sort algorithm:
1. Choose a pivot (e.g. first element)
2. Partition into three pieces:

< pivot, = pivot, > pivot
3. Recurse on first and last piece

(define (filter-comp comp pivot s)
 (filter (lambda (x) (comp x pivot)) s))

(define (quick-sort s)
 (if (<= (length s) 1)
 s
 (let ((pivot (car s)))
 (append (quick-sort (filter-comp < pivot s))
 (filter-comp = pivot s)
 (quick-sort (filter-comp > pivot s))))))

The Begin Special Form

(define (repeat k fn)
 (if (> k 0)
 (begin (fn) (repeat (- k 1) fn))
 'done))

(define (tri fn)
 (repeat 3 (lambda () (fn) (lt 120))))

(define (sier d k)
 (tri (lambda () (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
 (sier (/ d 2) (- k 1)) (penup) (fd d) (pendown))

(begin <exp1> <exp2> ... <expn>)

Begin expressions allow sequencing

	CS61A Lecture 28
	Announcements
	Pairs
	Recursive Lists
	Symbolic Programming
	Scheme Lists and Quotation
	The Let Special Form
	Quick Sort
	The Begin Special Form

