CS61A Lecture 31

Amir Kamil

UC Berkeley
April 3, 2013

Announcements

HW9 due tonight

O Ants extra credit due tonight

See Piazza for submission instructions

Hog revisions out, due Monday

O HW10 out tonight

Pairs @

Scheme has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, enclosed in
parentheses

> (cons 1 2)

(1. 2)
> (car (cons 1 2))
1

> (cdr (cons 1 2))
2

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)
> (cdr x)
(2 3 4)

4 50s 1 ycons 2 eons 3 400) ﬁ Not a well-formed list!]

Symbolic Programming

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(1 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)
(a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)

(a b)
> (list 'a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)
(a b)
> (list 'a b)
(a 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o
(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists
> (car '"(a b ¢))

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car '"(a b ¢))
a

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car '"(a b ¢))
a
> (cdr "(a b c))

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car "(a b c))
a

> (cdr "(a b c))
(b c)

Scheme Lists and Quotation

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '"(1 2 . 3)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '"(12 . 3) 1[e—[273

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> (12 . 3) 1[e—[2]3
(12 . 3)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '(12 . 3) 1[e—{2]3
(12 .3)
> (12 . (3 4))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '"(12 . 3) 1[e—[273
(12 . 3)
> '"(12 . (3 4)) 1[e—{2

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il

(123 4)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(12 3 . nil)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil

(1 2 3)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

> (cdr "((1 2) . (34 . (5))))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

> (cdr "((1 2) . (34 . (5))))
(345)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

...........

* .

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))
(if (fn First)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))
(it (fn first)
(cons fTirst rest)

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))
(it (fn first)
(cons fTirst rest)

rest))))

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))
(it (fn first)
(cons fTirst rest)

rest))))
> (filter even? '(1 23 456 7))

The Let Special Form @

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--

*
--

(define (filter fn s)
(f (null? s)
S
(let ((First (car s))
(rest (filter fn (cdr s))))
(it (fn first)
(cons fTirst rest)

rest))))

> (filter even? '(1 23 456 7))
(2 4 6)

Quick Sort

Quick Sort

Quick sort algorithm:

Quick Sort

Quick sort algorithm:
1. Choose a pivot (e.g. first element)

Quick Sort

Quick sort algorithm:
1. Choose a pivot (e.g. first element)

2. Partition into three pieces:
< pivot, = pivot, > pivot

Quick Sort

Quick sort algorithm:
1. Choose a pivot (e.g. first element)

2. Partition into three pieces:
< pivot, = pivot, > pivot

3. Recurse on first and last piece

Quick Sort

Quick sort algorithm: 9|13|1l6|5]|8]|7

1. Choose a pivot (e.g. first element)

2. Partition into three pieces:
< pivot, = pivot, > pivot

3. Recurse on first and last piece

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

Quick Sort

Quick sort algorithm: 931
1. Choose a pivot (e.g. first element)
2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot
3. Recurse on first and last piece 11[3f[6]>]8("7
(define (filter-comp comp pivot s) > 6 817

Quick Sort

Quick sort algorithm: 931
1. Choose a pivot (e.g. first element)
2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot
3. Recurse on first and last piece 11[3f[6]>]8("7
(define (filter-comp comp pivot s) > 6 817

(filter (lambda (x) (comp x pivot)) s))]>L_
8

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) > 6 817
(filter (lambda (x) (comp x pivot)) s))
iS

(define (quick-sort s)

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) > 6 817
(filter (lambda (x) (comp x pivot)) s))
iS

(define (quick-sort s)
(if (<= (Iength s) 1)

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) > 6 817
(filter (lambda (x) (comp x pivot)) s))
iS

(define (quick-sort s)
(if (<= (Iength s) 1)
S

Quick Sort

Quick sort algorithm: 9131

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3]11(6]5
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1]]3

(define (filter-comp comp pivot s)
(filter (lambda (x) (comp x pivot)) s))
iS

(define (quick-sort s)
(if (<= (Iength s) 1)
S
(let ((pivot (car s)))

Quick Sort

Quick sort algorithm: 9|13|1l6|5]|8]|7

1. Choose a pivot (e.g. first element) x
2. Partition into three pieces: 311({6]5]18[7][S

< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) 5 6 817
(filter (lambda (x) (comp x pivot)) s))

(define (quick-sort s) / iS

(if (<= (Iength s) 1)
S

(let ((pivot (car s)))
(append (quick-sort (filter-comp < pivot s))

Quick Sort

Quick sort algorithm: 9|13|1l6|5]|8]|7

1. Choose a pivot (e.g. first element) x
2. Partition into three pieces: 311({6]5]18[7][S

< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) 5 6 817
(filter (lambda (x) (comp x pivot)) s))

(define (quick-sort s) / iS

(if (<= (Iength s) 1)
S

(let ((pivot (car s)))
(append (quick-sort (filter-comp < pivot s))
(filter-comp = pivot s)

Quick Sort

Quick sort algorithm: 9|13|1l6|5]|8]|7

1. Choose a pivot (e.g. first element) \
2. Partition into three pieces: 311({6]5]18[7][S

< pivot, = pivot, > pivot

3. Recurse on first and last piece 1113116151817

(define (filter-comp comp pivot s) 5 6 817
(filter (lambda (x) (comp x pivot)) s))

(define (quick-sort s) / iS

(if (<= (Iength s) 1)
S
(let ((pivot (car s)))
(append (quick-sort (filter-comp < pivot s))
(filter-comp = pivot s)
(quick-sort (filter-comp > pivot s))))))

The Begin Special Form

Begin expressions allow sequencing

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

(define (repeat k fn)

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri fn)

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri1 fn)
(repeat 3 (lambda (O (fn) (1t 120))))

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri1 fn)
(repeat 3 (lambda (O (fn) (1t 120))))

(define (sier d k)

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri1 fn)
(repeat 3 (lambda (O (fn) (1t 120))))

(define (sier d k)
(tri (lambda O (if (= k 1) (fd d) (leg d k)))))

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri1 fn)
(repeat 3 (lambda (O (fn) (1t 120))))

(define (sier d k)
(tri (lambda O (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)

The Begin Special Form

Begin expressions allow sequencing

(begin <exp,;> <exp,> ... <exp,>)

(define (repeat k fn)
(f (G k 0
(begin (fn) (repeat (- k 1) fn))
“done))

(define (tri1 fn)
(repeat 3 (lambda (O (fn) (1t 120))))

(define (sier d k)
(tri (lambda O (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
(sier (/ d 2) (- kK 1)) (penup) (fd d) (pendown))

