
CS61A Lecture 30

Amir Kamil
UC Berkeley
April 1, 2013

 HW9 due Wednesday

 Ants extra credit due Wednesday
 See Piazza for submission instructions

 Hog revisions out, due next Monday

Announcements

Scheme Is a Dialect of Lisp

http://imgs.xkcd.com/comics/lisp_cycles.png

“The greatest single programming language ever designed.”
 -Alan Kay, co-inventor of Smalltalk and OOP

“The only computer language that is beautiful.”
 -Neal Stephenson, sci-fi author

“The most powerful programming language is Lisp. If you don't know Lisp (or its
variant, Scheme), you don't appreciate what a powerful language is. Once you learn
Lisp you will see what is missing in most other languages.”
 -Richard Stallman, founder of the Free Software movement

http://imgs.xkcd.com/comics/lisp_cycles.png

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))
57

Scheme Fundamentals

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and 0 or more operands

“quotient” names Scheme’s built-in
integer division procedure (i.e.,

function)

Combinations can span multiple
lines

(spacing doesn’t matter)

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding names: (define <name> <expression>)

• New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

> (define (abs x)
 (if (< x 0)
 (- x)
 x))
> (abs -3)
3

The name “pi” is bound to 3.14 in
the global frame

A procedure is created and bound
to the name “abs”

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a combination too:

((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
add-x-&-y-&-z2 procedure

λ

Pairs

We can implement pairs functionally:
(define (pair x y) (lambda (m) (if (= m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
A pair is represented by a dot between the elements, all in parens

> (cons 1 2)
(1 . 2)
> (car (cons 1 2))
1
> (cdr (cons 1 2))
2

Recursive Lists

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
• nil is the empty list
• A non-empty Scheme list is a pair in which the second element

is nil or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> x
(1 2 3 4)
> (cdr x)
(2 3 4)
> (cons 1 (cons 2 (cons 3 4)))
(1 2 3 . 4) Not a well-formed list!

Symbolic Programming

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(1 2)

Quotation prevents something from being evaluated by Lisp

No sign of “a” and “b” in the
resulting value

> (list 'a 'b)
(a b)
> (list 'a b)
(a 2)

Quotation can also be applied to combinations to form lists
> (car '(a b c))
a
> (cdr '(a b c))
(b c)

Symbols are now values

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '(1 2 . 3)
(1 2 . 3)
> '(1 2 . (3 4))
(1 2 3 4)
> '(1 2 3 . nil)
(1 2 3)

What is the printed result of evaluating this expression?
> (cdr '((1 2) . (3 4 . (5))))
(3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

	CS61A Lecture 27
	Announcements
	Scheme Is a Dialect of Lisp
	Scheme Fundamentals
	Special Forms
	Lambda Expressions
	Pairs
	Recursive Lists
	Symbolic Programming
	Scheme Lists and Quotation

