CS61A Lecture 30

Amir Kamil

UC Berkeley
April 1, 2013

Announcements

HW9 due Wednesday

O Ants extra credit due Wednesday

See Piazza for submission instructions

Hog revisions out, due next Monday

Scheme Is a Dialect of Lisp

Scheme Is a Dialect of Lisp

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of Smalltalk and OOP

Scheme Is a Dialect of Lisp

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of Smalltalk and OOP

III

“The only computer language that is beautifu
-Neal Stephenson, sci-fi author

Scheme Is a Dialect of Lisp Qf

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of Smalltalk and OOP

“The only computer language that is beautiful.”

-Neal Stephenson, sci-fi author

“The most powerful programming language is Lisp. If you don't know Lisp (or its
variant, Scheme), you don't appreciate what a powerful language is. Once you learn
Lisp you will see what is missing in most other languages.”

-Richard Stallman, founder of the Free Software movement

Scheme Is a Dialect of Lisp ‘G_z,f

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of Smalltalk and OOP

“The only computer language that is beautiful.”

-Neal Stephenson, sci-fi author
“The most powerful programming language is Lisp. If you don't know Lisp (or its

variant, Scheme), you don't appreciate what a powerful language is. Once you learn

Lisp you will see what is missing in most other languages.”
-Richard Stallman, founder of the Free Software movement

LISP 15 OVER HALFA | | T WONDER IF THECYCLES THESE ARE YOUR
&L CONTINUE FOREVER. FATHER'S PARENTH

ESE
CENTURYQOLD AND IT K - 5

STILL HAS THIS PERFECT —
TIMELESS AIRABUTTT., /M
N
A FEW CODERS FROMEACH

NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

http://imgs.xkcd.com/comics/lisp cycles.png

)

MM

M)

f

)

)

N\

JUN)]

—
-
_—
—
-
—
—
—
—_
—~

Y

ELEGANT
WEAPONS

FOR A MORE... CIVILZED AGE.

~

Scheme Fundamentals

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:

* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..
Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2)

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:

* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..
Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2)
5

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2)

5
> (quotient (+ 8 7) 5)

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...

®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2)

5

> (quotient (+ 8 7) 5)
3

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2)

5

> (quotient (+ 8 7) 5)
3

>

(+ (* 3
(+ (* 2 4)
(+ 3 5)))
(+ (- 10 7)
6))

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values
Call expressions have an operator and O or more operands

(quotient 10 2)

>

5

> (quotient (+ 8 7) 5)
3

>

(+ (* 3
(+ (* 2 4)
(+ 35)))
(+ (- 10 7)

6))
57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) T”quotient” names Scheme’s built—irj
5 integer division procedure (i.e.,

>

3

>

(quotient (+ 8 7) 5) function)

(+ (* 3
(+ (* 2 4)
(+ 35)))
(+ (- 10 7)

6))
57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
; (quotient (+ 8 7) 5) function))
> (+ (* 3 Combinations can span multiple b

(+ (* 2 4) lines

(+ 3 5))) (spacing doesn’t matter))
(+ (- 10 7)
6))

57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
; (quotient (+ 8 7) 5) function) P
> (Fr(* 3 Combinations can span multiple b

(+ (* 2 4) lines

(+ 3 5))) (spacing doesn’t matter))
(+ (- 10 7)
6))

57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
; (quotient (+ 8 7) 5) function) P
> @.(@[3 Combinations can span multiple b

(+ (* 2 4) lines

(+ 3 5))) (spacing doesn’t matter))
(+ (- 10 7)
6))

57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
; (quotient (+ 8 7) 5) function) P
> (Fr(Fr3 Combinations can span multiple b

(* 2 4) lines

(+ 3 5))) (spacing doesn’t matter))

(+ (- 10 7)
6))

57

Scheme Fundamentals @

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +, quotient, ...
®* Combinations: (quotient 10 2), (nhot true), ..

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and O or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
; (quotient (+ 8 7) 5) function) P
> (Fr(Fr3 Combinations can span multiple b

(* 2 4) lines

(+ 3 5))) (spacing doesn’t matter))

“(+(- 10 7)
))

57

Special Forms

Special Forms @

A combination that is not a call expression is a special form:

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)

® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)

® Binding names: (define <name> <expression>)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14) The name “pi” is bound to 3.14 in

the global frame

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)

: The name “pi” is bound to 3.14 in
> (* pi 2)

the global frame

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

The name “pi” is bound to 3.14 in
the global frame

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

The name “pi” is bound to 3.14 in
the global frame

> (define (abs x)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

The name “pi” is bound to 3.14 in
the global frame

> (define (abs x)
(if (< x 9)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

The name “pi” is bound to 3.14 in
the global frame

> (define (abs x)
(if (< x 9)
(- %)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

The name “pi” is bound to 3.14 in
the global frame

> (define (abs x)
(if (< x 9)
(- %)
X))

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

. .)
> (ief}ne pi 3.14) The name “pi” is bound to 3.14 in
> (* p12) the global frame
6.28)
.)
> (define (abs x) A procedure is created and bound
(if (< x @) to the name “abs”
(- x))

X))

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

. .)
> (ief}ne pi 3.14) The name “pi” is bound to 3.14 in
> (* p12) the global frame
6.28)
.)
> (define (abs x) A procedure is created and bound
(if (< x @) to the name “abs”
(- x))
X))

> (abs -3)

Special Forms @

A combination that is not a call expression is a special form:

®* |f expression: (if <predicate> <consequent> <alternative>)
® Andandor: (and <e1> ... <en>), (or <ei> ... <en>)
® Binding names: (define <name> <expression>)

® New procedures: (define (<name> <formal parameters>) <body>)

. .)
> (ief}ne pi 3.14) The name “pi” is bound to 3.14 in
> (* p12) the global frame
6.28)

.)
> (define (abs x) A procedure is created and bound

(if (< x @) to the name “abs”
(- x))
X))
> (abs -3)

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (xX) (+ x 4)))

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (xX) (+ x 4)))

An operator can be a combination too:

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (xX) (+ x 4)))

An operator can be a combination too:

((lambda (x vy z) (+ Xy (square z))) 1 2 3)

Lambda Expressions @

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (xX) (+ x 4)))

An operator can be a combination too:

Evaluates to the
add-x-&-y-&-z° procedure

Pairs

Pairs

We can implement pairs functionally:

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:
® cons: Two-argument procedure that creates a pair

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:
® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair

® car: Procedure that returns the first element of a pair

* cdr: Procedure that returns the second element of a pair

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)
(1. 2)

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)
(1. 2)
> (car (cons 1 2))

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

(1. 2)

> (car (cons 1 2))
1

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

(1. 2)
> (car (cons 1 2))
1

> (cdr (cons 1 2))

Pairs @

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

(1. 2)

> (car (cons 1 2))
1

> (cdr (cons 1 2))
2

Recursive Lists

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:

* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:

* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni I or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:

* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)
> (cdr x)

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)
> (cdr x)
(2 3 4)

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)

> (cdr x)

(2 3 4)

> (cons 1 (cons 2 (cons 3 4)))

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)

> (cdr x)

(2 3 4)

> (cons 1 (cons 2 (cons 3 4)))
(123 . 4)

Recursive Lists @

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)
> (cdr x)
(2 3 4)

1 50 1 ycons 2 eons 3 400) ﬁ Not a well-formed list!]

Symbolic Programming

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(1 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)
(a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)

(a b)
> (list 'a b)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp
> (list 'a 'b)
(a b)
> (list 'a b)
(a 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o
(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car "(a b c))

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car '"(a b ¢))
a

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car '"(a b ¢))
a
> (cdr "(a b c))

Symbolic Programming @

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(12)

N

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) o

(a b) —= Symbols are now values
> (list 'a b) k

(a 2)

Quotation can also be applied to combinations to form lists

> (car "(a b c))
a

> (cdr "(a b c))
(b c)

Scheme Lists and Quotation

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

1|23

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '"(12 . 3) 1[e—[273

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> (12 . 3) 1[e—[2]3
(12 . 3)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '(12 . 3) 1[e—{2]3
(12 .3)
> (12 . (3 4))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '"(12 . 3) 1[e—[273
(12 . 3)
> '"(12 . (3 4)) 1[e—{2

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il

(123 4)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)
> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(12 3 . nil)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil

(1 2 3)

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

> (cdr "((1 2) . (34 . (5))))

Scheme Lists and Quotation @

Dots can be used in a quoted list to specify the second element

of the final pair

> (cdr (cdr '"(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> "(1 2 . 3) 1|e—[2]3
(12 . 3)

> '(1 2. (3 4)) 1| e—|2| e—[3]| —|4]| il
(123 4)

> '(1 2 3 . nil) 1| e+—[2| {3]| —inil
(1 2 3)

What is the printed result of evaluating this expression?

> (cdr "((1 2) . (34 . (5))))
(345)

