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Announcements

HW9 due Wednesday

O Ants extra credit due Wednesday

See Piazza for submission instructions

Hog revisions out, due next Monday
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Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (xX) (+ x 4)))

An operator can be a combination too:

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

Evaluates to the
add-x-&-y-&-z° procedure
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(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
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We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (=m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

® cons: Two-argument procedure that creates a pair
® car: Procedure that returns the first element of a pair
* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

(1. 2)

> (car (cons 1 2))
1

> (cdr (cons 1 2))
2
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A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X
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A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
* nilisthe empty list

®* A non-empty Scheme list is a pair in which the second element
isni 1 or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(123 4)
> (cdr x)
(2 3 4)

1 50 1 ycons 2 eons 3 400) ﬁ Not a well-formed list! ]
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