CS61A Lecture 26

Amir Kamil and Hamilton Nguyen

UC Berkeley
March 22, 2013

Announcements

O HW9 out tonight, due 4/3

O Ants extra credit due 4/3

See Piazza for submission instructions

Data Structure Applications Q!

The data structures we cover in 61A are used everywhere in CS
More about data structures in 61B

Example: recursive lists (also called linked lists)
® Operating systems

® Interpreters and compilers

® Anything that uses a queue

The Scheme programming language, which we will learn soon,
uses recursive lists as its primary data structure

Example: Environments

14

(CRest 5 ctonat rrane (Restis EMPtY) rune curryctms

curry

Example: http://goo.gl/8DNY1

func add(...)
func outer(x} [parent=f1)

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):

return fn(x, y)

return inner
return outer

from operator import add

curry(add) (3) (4)

Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

class Tree(object):
def __init__(self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib_tree(n):
ifn==1:
return Tree(0)
ifn==2:
return Tree(1)
left = fib_tree(n - 2)
right = fib_tree(n - 1)
return Tree(left.entry + right_entry, left, right)

Implementing Sets

Gl

What we should be able to do with a set:

® Membership testing: Is a value an element of a set?

® Union: Return a set with all elements in set1 or set2

® Intersection: Return a set with any elements in set1 and set2

® Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
1 2 1 2 1
3 3 3 3 3 2
4 5 4 5 4
\\// \\// ~
12 12
453 3 4 3

Sets as Unordered Sequences @

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

This is how we implemented dictionaries

def empty(s):
return s is Rlist.empty

def set_contains(s, V):
it empty(s):
return False
elif s.first == v:
return True
return set_contains(s.rest, v)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, v): O(n)

if set_contains(s, v):

return s The size of

return Rlist(v, s) the set
def intersect_set(setl, set2): a(n®

f = lambda v: set_contains(set2, v)

return filter_rlist(setl, f) Assume sets are

the same size

def union_set(setl, set2): O(n?)

f = lambda v: not set_contains(set2, v)
setl_not_set2 = filter_rlist(setl, f)
return extend_rlist(setl_not_set2, set2)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set_contains2(s, Vv):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True
return set_contains(s.rest, v)

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def intersect_set2(setl, set2):
iT empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2_first
if el == e2:
rest = intersect_set2(setl.rest, set2.rest)
return Rlist(el, rest)
elif el < e2:
return intersect_set2(setl.rest, set2)
elif e2 < el:
return intersect_set2(setl, set2.rest)

Order of growth? ©(n)

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:
® Larger than all entries in its left branch and

® Smaller than all entries in its right branch

NN N\
1// \\5 \}1 1 5//7\\9 1// 7// \}1
\

11

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
* By focusing on one branch, we reduce the set by about half

def set_contains3(s, Vv):
if s is None:
return False
elif s_entry == v:
return True
elif s_entry < v:
return set_contains3(s.right, v)
elif s_entry > v:
return set_contains3(s.left, v)

If 9 is in the set, it
is in this branch

Order of growth?

Adjoining to a Tree Set @

5 9 7 None
AN
/ / \ 7 11 None None
1 7 11
Right! Left! Right! Stop!

VANEERVAN \
1/ 7/ \11 7\ N

8

8

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:
® Intersection of two sets
® Union of two sets

That's homework 9!

Social Implications / Programming Practices @

O Why things go wrong
O What can we do about this

Therac-25 Case Study

14

O Medical imaging
device

onfoff light —

\

interlock —_|
switch

Room
emergency ~
switch

Display —
terminal

I
TV menitor Printer

Motion enable Control

switch (footswitch) console

Figure 9 Typical Therac-25 Facility

Therapy room
intercom

Therac-25 unit

Treatment table

Turntable
position
monitor

Therac-25 Case Study @

O What happened?
O 6 serious injuries
O 4 deaths

O Otherwise effective — saved hundreds of lives

Lesson to be learned

O Social responsibility in engineering

O First real incident of fatal software failure

O Bigger issue
No bad guys
Honestly believed there was nothing wrong

“Software Rot” Q!

A bigger picture

Gl

O Other engineering fields: clear sense of
degradation and decay

O Can software become brittle or fractured?

OAll software is part of a bigger system

O Software degrades because:
Other piece of software changes
Hardware changes
Environment changes

Ex: Compatibility Issues Qg

A bigger issue

14

S Progtar Compatity st =

This program has known compatibility issues

Check
will autematically

ANISIS 5023\

ver, 2007 and 2008 is incompatible with this version of Windows. For more
e

ct Symant
Check for jolutions onkine_| [Bun program | | Cancel

Dgn't show this message again

O The makers of the Therac did not fully
understand the complexity of their software

O Complexity of constructs in other fields more
apparent

A “simple” program Ql!

Complexity in the Therac-25

O This program can delete any file you can

REEREREEER

O Abundant user interface issues

O Cursor position and field entry
O Default values
O Too many error messages

Too many error messages

Internet Explorer

(. ?) When you send information to the Intemet, it might be
o possible for others to see that information. Do you want
to continue?

¥ Inthe future, do not show this message.

x|

Too many error messages

Internet Explorer 1 _.)Sj

7) When you see a dialog box like this, click "Yes' to
make it go away. If available, click the checkbox
first to avoid being bothered by t again.

V' Inthe future, do not show this message.

ﬂnl

(More) Complexity in the Therac-25

¢4

O No atomic test-and-set
O No hardware interlocks

How can we solve these things?

14

O Know your user

O Fail-Soft (or Fail-Safe)

O Audit Trail

O Correctness from the start
O Redundancy

Fail-Soft (or Fail-Safe)

def mutable_rlist():
def dispatch(message, value=None):
nonlocal contents
if message == "first":
return first(contents)
if message == “rest”:
return rest(contents)
if message == "len”:
return len_rlist(contents)

else:
print(“Unknown message®)
return dispatch

Correctness from the start

Gl

O Edsger Dijkstra: “On the Cruelty of Really
Teaching Computing Sciences”

O CS students shouldn’t use computers
O Rigorously prove correctness of their programs

O Correctness proofs

O Compilation (pre-execution) analysis

On debugging

O Black box debugging
O Glass box debugging
O Don’t break what works

O Golden rule of debugging...

Golden rule of debugging @

O“Debug by subtraction, not by
addition”

Prof. Brian Harvey

