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Announcements

HW9 out tonight, due 4/3

O Ants extra credit due 4/3

See Piazza for submission instructions
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Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)
® Operating systems

® Interpreters and compilers

® Anything that uses a queue

The Scheme programming language, which we will learn soon,
uses recursive lists as its primary data structure



Example: Environments

Global frame

curry
add

T1: €Urry
fn

outer

Return
value

f2: outer [parent=f1l]

X
inner

Return
value

inner [parent=f2]

Y

3

4

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)
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C Rest } Global frame [ReSt IS Emptyj func curry(fn)
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Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def Tib_tree(n):
it n=1:
return Tree(0)
It n ==
return Tree(l)
left = Tib tree(n - 2)
right = fib tree(n - 1)
return Tree(left.entry + right.entry, left, right)



Implementing Sets @

What we should be able to do with a set:

® Membership testing: Is a value an element of a set?

® Union: Return a set with all elements in set1 or set2

® |ntersection: Return a set with any elements in set1 and set2

® Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
O ) ) N N )
1 2 1 2 1
3 3 3 3 3 2
\4 J - 5 J \4 J g 5 J \4 J
T ) ) A )
1 2 12
4 53 3 4 3




Sets as Unordered Sequences @

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

This is how we implemented dictionaries

def empty(s):
return s i1s Rlist.empty

def set contains(s, V):
1T empty(s):
return False
elif s.first == v:
return True
return set contains(s.rest, V)
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if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

def Intersect set(setl, set2):
f = lambda v: set contains(set2, v)

return filter rlist(setl, T)
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def adjoin_set(s, V): O(n)
if set contains(s, V): —N\
return s The size of
return RIist(v, s) the set
def intersect _set(setl, set2): O(n%)
A

f = lambda v: set_contains(set2, v)
return filter rlist(setl, ) [

Assume sets are
the same size

def union_set(setl, set2):
T = lambda v: not set _contains(set2, V)
setl not_set2 = fTilter_rlist(setl, T)
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Time order of growth

def adjoin_set(s, V): O(n)
1T set _contains(s, V): : N
return s The size of
return Rlist(v, s) the set
def Intersect set(setl, set2): 69(n2)
T = lambda v: set contains(set2, V) N\
return filter rlist(setl, f) Assume sets are
the same size

def union_set(setl, set2):
T = lambda v: not set contains(set2, v)
setl not set2 = fTilter rlist(setl, T)
return extend rlist(setl _not set2, set2?)
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Time order of growth

def adjoin_set(s, V): O(n)
1T set _contains(s, V): : A
return s The size of
return Rlist(v, s) the set
def Intersect set(setl, set2): 69(n2)
T = lambda v: set contains(set2, V) N\
return filter rlist(setl, f) Assume sets are
the same size
def union_set(setl, set2): GB(nQ)

T = lambda v: not set _contains(set2, V)
setl not_set2 = fTilter_rlist(setl, T)
return extend rlist(setl _not set2, set2?)
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Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:
return False
elit s.first == v:
return True
return set contains(s.rest, V)

Order of growth? ©O(n)
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This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)
elifT el < e2:
return iIntersect set2(setl.rest, set2)
elifT e2 < el:
return intersect set2(setl, set2.rest)

Order of growth? ©(n)
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Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:

® Larger than all entries in its left branch and

® Smaller than all entries in its right branch

VA /\ A\
/\ \ 15/\9 / /\
\

11
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® By focusing on one branch, we reduce the set by about half

def set contains3(s, V): 9

1T s 1s None: 5
return False

elif s.entry == v: // \\
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return True 3 9
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What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:
® |ntersection of two sets

® Union of two sets

That's homework 9!



Social Implications / Programming Practices @

Why things go wrong

What can we do about this




Therac-25 Case Study




Therac-25 Case Study

Room Motion Therapy room
uncrgl; enc power switch intercom
switches

camera

Beam %
on/off light \\

Door &N
interlock B
S“fiti:h \r‘
\ . — MARRLRR
) \n—n=l=$.\_--
Room
emergency
switch
. Treatment table
Display
terminal
- TV monitor Printer Tl"'_n_ti\ble
Motion enable Control position
switch (footswitch) console monitor

Figure 9 Typical Therac-25 Facility



Therac-25 Case Study
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Medical imaging
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Figure 9 Typical Therac-25 Facility
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Therac-25 Case Study

What happened?
6 serious injuries
4 deaths

Otherwise effective — saved hundreds of lives
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Lesson to be learned

Social responsibility in engineering

First real incident of fatal software failure

Bigger issue
No bad guys

Honestly believed there was nothing wrong



“Software Rot” @

Other engineering fields: clear sense of
degradation and decay

Can software become brittle or fractured?
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A bigger picture @

All software is part of a bigger system

Software degrades because:

Other piece of software changes

Hardware changes
Environment changes



Ex: Compatibility Issues

- Program Compatibility Assistant (e
This program has known compatibility issues

Check online to see if solutions are available from the Microsoft website. If solutions are found, Windows
will automatically display a website that lists steps you can take.

Publisher: Symantec

@ Program: Norton Internet Security ver. 2007 and 2008
& Location: C:\Users\laptop\AppData\Local\Temp\NIS15.5.0.23\Setup.exe

Norton Internet Security ver. 2007 and 2008 is incompatible with this version of Windows. For more
information, contact Symantec.

......

A Hide details . Check for solutions online §| Run program H Cancel

........

Don't show this message again




A bigger issue @

The makers of the Therac did not fully
understand the complexity of their software

Complexity of constructs in other fields more
apparent
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simple”
program




A “simple” program

Score: 1019
Moves: 181




A “simple” program ‘Cd

Game Deall Help

This program can delete any file you can
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Complexity in the Therac-25

Abundant user interface issues

Cursor position and field entry

Default values

Too many error messages




Too many error messages

Internet Explorer 7 X|

__ i ?) When you send information to the Intemet, it might be
'-ﬁ possible for others to see that information. Do you want
to continue?

IV Inthe future, do not show this message.




Too many error messages

Internet Explorer X|

f 2)  When you see a dialog box like this, click "Yes' to
" make it go away. If available, click the checkbox
first to avoid being bothered by it again.

[V In the future, do not show this message.

Yes No




(More) Complexity in the Therac-25 @

No atomic test-and-set

No hardware interlocks




How can we solve these things? @

Know your user
Fail-Soft (or Fail-Safe)

Audit Trail
Correctness from the start

Redundancy




Fail-Soft (or Fail-Safe)

def mutable rlist():
def dispatch(message, value=None):
nonlocal contents
iIT message == "Tirst":
return first(contents)
IT message == "rest”":
return rest(contents)
IT message == "len":
return len _rlist(contents)

return dispatch



Fail-Soft (or Fail-Safe)

def mutable rlist():
def dispatch(message, value=None):
nonlocal contents
iIT message == "Tirst":
return first(contents)
IT message == "rest”":
return rest(contents)
IT message == "len":
return len _rlist(contents)
else:
print("Unknown message”)
return dispatch



Correctness from the start @

Edsger Dijkstra: “On the Cruelty of Really
Teaching Computing Sciences”

CS students shouldn’t use computers

Rigorously prove correctness of their programs

Correctness proofs

Compilation (pre-execution) analysis




On debugging

Black box debugging

Glass box debugging

Don’t break what works

Golden rule of debugging...




Golden rule of debugging @

O0“Debug by subtraction, not by
addition”

Prof. Brian Harvey



