CS61A Lecture 26

Amir Kamil and Hamilton Nguyen

UC Berkeley
March 22, 2013

Announcements

HW9 out tonight, due 4/3

O Ants extra credit due 4/3

See Piazza for submission instructions

Data Structure Applications

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)
® Operating systems

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS
More about data structures in 61B
Example: recursive lists (also called linked lists)

® Operating systems
® Interpreters and compilers

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)
® Operating systems

® Interpreters and compilers

® Anything that uses a queue

Data Structure Applications @

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)
® Operating systems

® Interpreters and compilers

® Anything that uses a queue

The Scheme programming language, which we will learn soon,
uses recursive lists as its primary data structure

Example: Environments

Global frame

curry
add

T1: €Urry
fn

outer

Return
value

f2: outer [parent=f1l]

X
inner

Return
value

inner [parent=f2]

Y

3

4

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: http://goo.gl/8DNY1

Example: Environments

Global frame

curry
add

T1: €Urry
fn

outer

Return
value

f2: outer [parent=f1l]
X |3
inner .

Return
value

--
*

* *
--

Example: http://goo.gl/8DNY1

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: Environments

Global frame

curry
add

T1: €Urry
fn

outer

Return
value

f2: outer [parent=f1l]
X |3
inner .

Return
value

--
*

* *
--

Example: http://goo.gl/8DNY1

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: Environments

Global frame

curry
add

T1: €Urry
fn

outer

Return
value

--
* *

f2: outer [parent=f1l]

. .
--

--
*

* *
--

Example: http://goo.gl/8DNY1

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: Environments

Global frame func curry(fn)
curry func add(...)
add
func outer(x) [parent=f1l]
T1: €Urry
func inner(y) [parent=f2]
fn
outer
Return
value
prr—— ‘ def currycin:
: f2: outer [parent=f1l] : A6t BULEF(R):
C Rest } X 3 : .
: : i def inner(y):
: | inner | < : = return fn(x, y)
C First } Return | /i i return inner
KZ:::::::::::::iﬂii::ff’ return outer
:) vl e from operator import add
C First } y 4:i: curry(add) (3) (4)

Example: http://goo.gl/8DNY1

Example: Environments

Global frame

--
. »

.
.
--
--

. .

f2: outer [parent=f1l]

t: inner —)
C First } Return
s value

.
--
..

--
*

Example: http://goo.gl/8DNY1

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: Environments

Global frame func curry(fn)

curry func add(...)
add
... func outer(x) [parent=f1]
T1: €Urry
....................................... func inner(y) [parent=f2]
C Rest } fn
outer
(First } Return
'. value
... def curry(fn):
f2: outer [parent=f1l] def outer(x):
(: Rest j)ﬁi EY: def inner(y):
. inner — return fn(x, y)
(: First :}% Return return inner
value

*

*
0. *

--
*

* *
--

Example: http://goo.gl/8DNY1

return outer

from operator import add
curry(add) (3) (4)

Example: Environments

..
* *

C Rest } Global frame func curry(fn)
aarry |© func add(...)
: add :
R T func outer(x) [parent=fl]
: fl: curry :
D e, S func inner(y) [parentsz]
C Rest }‘ fn |¢%/:
outer |}/
(First } Return
oy value
P ‘ def curry(fn):
: f2: outer [parent=f1l] : JuP BUTBEIE):
Rest } Jormmsees s, J .
C X |34/ def inner(y):
: inner | < : = return fn(x, y)
C First } Return | /i i return inner
"’32::::::::::::::::::::::::::;/:?:léj:(:?:::::‘.'.:f: return outer
; [T a e e from operator import add
C First } y 4:i: curry(add) (3) (4)

Example: http://goo.gl/8DNY1

Example: Environments

..
* *

: curry
C First } add
: T1: €Urry
C Rest } fn |«
5; outer
(First } Return
oy value
f2: outer [parent=f1]
(: Rest j}i{ ;ug,
inner —)
C First } Return
s value

.
--
..

--
*

Example: http://goo.gl/8DNY1

func curry(fn)
func add(...)
func outer(x) [parent=f1l]

func inner(y) [parent=f2]

def curry(fn):
def outer(x):
def inner(y):
return fn(x, y)
return inner
return outer

from operator import add
curry(add) (3) (4)

Example: Environments

C Rest } Global frame [ReSt IS Emptyj func curry(fn)
. curry Tt func add(...)
C First } add i :
R func outer(x) [parent=f1]
T1: €Urry
func inner(y) [parent=f2]

*

.
.
--

--
* *

def curry(fn):

.
--
..

--
*

--

Example: http://goo.gl/8DNY1

: f2: outer [parent=fl] def outer(x)
I | sessEssEsEsEssEEEseEEEEEEEEEEEEEEEEEE. u w
Re j}’ ’ .
(: st ¥ X 35 def inner(y):
. inner — return fn(x, y)
(: First :}% Return return inner
s s value

return outer

from operator import add
curry(add) (3) (4)

Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

class Tree(object):
def init_ (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def Tib_tree(n):
it n=1:
return Tree(0)
It n ==
return Tree(l)
left = Tib tree(n - 2)
right = fib tree(n - 1)
return Tree(left.entry + right.entry, left, right)

Implementing Sets @

What we should be able to do with a set:

® Membership testing: Is a value an element of a set?

® Union: Return a set with all elements in set1 or set2

® |ntersection: Return a set with any elements in set1 and set2

® Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
O)) N N)
1 2 1 2 1
3 3 3 3 3 2
\4 J - 5 J \4 J g 5 J \4 J
T)) A)
1 2 12
4 53 3 4 3

Sets as Unordered Sequences @

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

This is how we implemented dictionaries

def empty(s):
return s i1s Rlist.empty

def set contains(s, V):
1T empty(s):
return False
elif s.first == v:
return True
return set contains(s.rest, V)

Sets as Unordered Sequences @

Sets as Unordered Sequences @

def adjoin_set(s, V):

Sets as Unordered Sequences @

def adjoin_set(s, V):
1T set _contains(s, V):

Sets as Unordered Sequences @

def adjoin_set(s, V):
1T set _contains(s, V):
return s

Sets as Unordered Sequences @

def adjoin_set(s, V):
1T set _contains(s, V):
return s
return RIlist(v, s)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V):
1T set _contains(s, V):
return s
return RIlist(v, s)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
1T set contains(s, V):
return s
return RIist(v, s)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

def Intersect set(setl, set2):

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

def Intersect set(setl, set2):
f = lambda v: set contains(set2, v)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

def Intersect set(setl, set2):
f = lambda v: set contains(set2, v)

return filter rlist(setl, T)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set contains(s, V): —N\
return s The size of
return RIist(v, s) the set
def intersect _set(setl, set2): O(n%)

T = lambda v: set contains(set2, V)
return filter rlist(setl, 1)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set contains(s, V): —N\

return s The size of
return RIist(v, s) the set

def intersect _set(setl, set2): O(n%)
A

return filter rlist(setl, 1)

T = lambda v: set contains(set2, V)
[the same size

Assume sets are]

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set contains(s, V): —N\
return s The size of
return RIist(v, s) the set
def intersect _set(setl, set2): O(n%)
A

return filter rlist(setl, T)

f = lambda v: set_contains(set2, v)
[the same size

Assume sets arej

def union_set(setl, set2):

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set _contains(s, V): N\
return s The size of
return RIist(v, s) the set

def Intersect set(setl, set2): @('TLZ)
T = lambda v: set contains(set2, V) [N\

return filter_rlist(setl, f) Assume sets arej

the same size

def union_set(setl, set2):
T = lambda v: not set contains(set2, v)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
if set contains(s, V): —N\
return s The size of
return RIist(v, s) the set
def intersect _set(setl, set2): O(n%)
A

f = lambda v: set_contains(set2, v)
return filter rlist(setl,) [

Assume sets are
the same size

def union_set(setl, set2):
T = lambda v: not set _contains(set2, V)
setl not_set2 = fTilter_rlist(setl, T)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
1T set _contains(s, V): : N
return s The size of
return Rlist(v, s) the set
def Intersect set(setl, set2): 69(n2)
T = lambda v: set contains(set2, V) N\
return filter rlist(setl, f) Assume sets are
the same size

def union_set(setl, set2):
T = lambda v: not set contains(set2, v)
setl not set2 = fTilter rlist(setl, T)
return extend rlist(setl _not set2, set2?)

Sets as Unordered Sequences @

Time order of growth

def adjoin_set(s, V): O(n)
1T set _contains(s, V): : A
return s The size of
return Rlist(v, s) the set
def Intersect set(setl, set2): 69(n2)
T = lambda v: set contains(set2, V) N\
return filter rlist(setl, f) Assume sets are
the same size
def union_set(setl, set2): GB(nQ)

T = lambda v: not set _contains(set2, V)
setl not_set2 = fTilter_rlist(setl, T)
return extend rlist(setl _not set2, set2?)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

Order of growth?

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

Order of growth? ©(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):

Order of growth? ©(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:

Order of growth? ©(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:
return False

Order of growth? ©(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:
return False
elit s.first == v:

Order of growth? ©(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:
return False
elit s.first == v:
return True

Order of growth? ©O(n)

Sets as Ordered Sequences @

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, V):
1T empty(s) or s.first > v:
return False
elit s.first == v:
return True
return set contains(s.rest, V)

Order of growth? ©O(n)

Set Intersection Using Ordered Sequences @

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

Order of growth?

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
IT el == e2:

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):

1T empty(setl) or empty(set2):
return Rlist.empty

el, e2 = setl.first, set2.first

IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)

elifT el < e2:

Order of growth? O(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):

1T empty(setl) or empty(set2):
return Rlist.empty

el, e2 = setl.first, set2.first

IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)

elifT el < e2:
return iIntersect set2(setl.rest, set2)

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):

1T empty(setl) or empty(set2):
return Rlist.empty

el, e2 = setl.first, set2.first

IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)

elifT el < e2:
return iIntersect set2(setl.rest, set2)

elifT e2 < el:

Order of growth? ©(n)

Set Intersection Using Ordered Sequences @

This algorithm assumes that elements are in order.

def Intersect set2(setl, set2):
1T empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
IT el == e2:
rest = iIntersect set2(setl.rest, set2.rest)
return RIist(el, rest)
elifT el < e2:
return iIntersect set2(setl.rest, set2)
elifT e2 < el:
return intersect set2(setl, set2.rest)

Order of growth? ©(n)

Tree Sets

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:

® Larger than all entries in its left branch and

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:
® Larger than all entries in its left branch and

® Smaller than all entries in its right branch

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:
® Larger than all entries in its left branch and

® Smaller than all entries in its right branch

3 /7 \9
1/ \5 \11

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:
® Larger than all entries in its left branch and

® Smaller than all entries in its right branch
3
/ \ / \
1 V4
/ \ \ / N\
5 9
\

Tree Sets @

Proposal 3: A set is represented as a Tree. Each entry is:

® Larger than all entries in its left branch and

® Smaller than all entries in its right branch

VA /\ A\
/\ \ 15/\9 / /\
\

11

Membership in Tree Sets

Membership in Tree Sets

Set membership tests traverse the tree

Membership in Tree Sets

Set membership tests traverse the tree
® The element is either in the left or right sub-branch

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:
return True

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:
return True
elif s.entry < v:

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:
return True
elif s.entry < v:
return set contains3(s.right, v)

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:
return True
elif s.entry < v:
return set contains3(s.right, v)
elif s.entry > v:

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch

® By focusing on one branch, we reduce the set by about half

def set _contains3(s, V):
iIT s 1s None:
return False
elif s.entry == v:
return True
elif s.entry < v:
return set contains3(s.right, v)
elif s.entry > v:

return set contains3(s.left, v)

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch

® By focusing on one branch, we reduce the set by about half

def set _contains3(s, V):
iIT s 1s None:

5
return False
elif s.entry == v: // \\
return True 3 9
elif s.entry < v: // // \\
return set contains3(s.right, v)
elif s.entry > v: 1 7/ 11

return set contains3(s.left, v)

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch

® By focusing on one branch, we reduce the set by about half

def set contains3(s, V): 9

iIT s 1s None: 5
return False

elif s.entry == v: // \\
return True 3 9

elif s.entry < v: // // \\
return set contains3(s.right, v)

elif s.entry > v: 1 7/ 11

return set contains3(s.left, v)

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V): 9

1T s 1s None: 5
return False

elif s.entry == v: // \\

return True 3 9

elif s.entry < v: // E // \\ ;
return set contains3(s.right, v) : :

elif s.entry > v: 1 L7 11 ;

.

return set_contains3(s.left, v) /\

If 9 isin the set, it
is in this branch

Membership in Tree Sets @

Set membership tests traverse the tree
® The element is either in the left or right sub-branch
® By focusing on one branch, we reduce the set by about half

def set contains3(s, V): 9

1T s 1s None: 5
return False

elif s.entry == v: // \\

return True 3 9

elif s.entry < v: // E // \\ ;
return set contains3(s.right, v) : :

elif s.entry > v: 1 L7 11 ;

.

return set_contains3(s.left, v) /\

If 9 isin the set, it
is in this branch

Order of growth?

Adjoining to a Tree Set

Adjoining to a Tree Set

8

/\
/ /\

Adjoining to a Tree Set

8

/\
/ /\

Right!

Adjoining to a Tree Set

8

/\
/ /\

Right!
—

Adjoining to a Tree Set

VANV
/ / \ 7 11
Right!

—

Adjoining to a Tree Set

3 3

AN
/ /\ 7 11

Right! Left!
—

Adjoining to a Tree Set

/ \ /9\ 7
/ / \ 7 11
Right! Left!

—

Adjoining to a Tree Set

3 3 3

/ \ /9\ 2
/ / \ 7 11 Nor:;e Nc;ne

Right! Left!
—

Adjoining to a Tree Set

3 3 3

/ \ /9\ 2
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right!
—

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7" None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right!
—

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7" None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!
-

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7“ None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!

—
—

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7“ None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!

—
—

8

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7“ None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7“ None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!

/ \ \
3
7 11

\
3

Adjoining to a Tree Set

3 3 3 3

/ \ /9\ :7“ None
/ / \ 7 11 Nor:;e Ngne

Right! Left! Right! Stop!

AN
1/ 7/ \11 7\8 i

8

What Did | Leave Out?

What Did | Leave Out?

Sets as ordered sequences:

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:
® |ntersection of two sets

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:
® |ntersection of two sets
® Union of two sets

What Did | Leave Out?

Sets as ordered sequences:
® Adjoining an element to a set
® Union of two sets

Sets as binary trees:
® |ntersection of two sets

® Union of two sets

That's homework 9!

Social Implications / Programming Practices @

Why things go wrong

What can we do about this

Therac-25 Case Study

Therac-25 Case Study

Room Motion Therapy room
uncrgl; enc power switch intercom
switches

camera

Beam %
on/off light \\

Door &N
interlock B
S“fiti:h \r‘
\ . — MARRLRR
) \n—n=l=$._--
Room
emergency
switch
. Treatment table
Display
terminal
- TV monitor Printer Tl"'_n_ti\ble
Motion enable Control position
switch (footswitch) console monitor

Figure 9 Typical Therac-25 Facility

Therac-25 Case Study

device

Medical imaging

Room Motion Therapy room
cmcrgl;cncy power switch intercom
TV switches

Beam %
on/off light \\

Door
interlock '
SWILC h \ N

Room

Therac-25 unit

emergency

switch

. Treatment table
Display

terminal
Turntable
Motion enable Control position
switch (footswitch) console monitor

TV monitor Printer

Figure 9 Typical Therac-25 Facility

Therac-25 Case Study

Therac-25 Case Study

What happened?

Therac-25 Case Study

What happened?

6 serious injuries

Therac-25 Case Study

What happened?
6 serious injuries
4 deaths

Therac-25 Case Study

What happened?
6 serious injuries
4 deaths

Otherwise effective — saved hundreds of lives

Lesson to be learned

Lesson to be learned

Social responsibility in engineering

Lesson to be learned

Social responsibility in engineering

First real incident of fatal software failure

Lesson to be learned

Social responsibility in engineering

First real incident of fatal software failure

Bigger issue
No bad guys

Honestly believed there was nothing wrong

“Software Rot” @

Other engineering fields: clear sense of
degradation and decay

Can software become brittle or fractured?

A bigger picture

A bigger picture @

All software is part of a bigger system

A bigger picture @

All software is part of a bigger system

Software degrades because:

Other piece of software changes

Hardware changes
Environment changes

Ex: Compatibility Issues

- Program Compatibility Assistant (e
This program has known compatibility issues

Check online to see if solutions are available from the Microsoft website. If solutions are found, Windows
will automatically display a website that lists steps you can take.

Publisher: Symantec

@ Program: Norton Internet Security ver. 2007 and 2008
& Location: C:\Users\laptop\AppData\Local\Temp\NIS15.5.0.23\Setup.exe

Norton Internet Security ver. 2007 and 2008 is incompatible with this version of Windows. For more
information, contact Symantec.

......

A Hide details . Check for solutions online §| Run program H Cancel

........

Don't show this message again

A bigger issue @

The makers of the Therac did not fully
understand the complexity of their software

Complexity of constructs in other fields more
apparent

A o _°
simple”
program

A “simple” program

Score: 1019
Moves: 181

A “simple” program ‘Cd

Game Deall Help

This program can delete any file you can

Complexity in the Therac-25

Complexity in the Therac-25

Abundant user interface issues

Complexity in the Therac-25

Abundant user interface issues

Cursor position and field entry

Complexity in the Therac-25

Abundant user interface issues

Cursor position and field entry

Default values

Complexity in the Therac-25

Abundant user interface issues

Cursor position and field entry

Default values

Too many error messages

Too many error messages

Internet Explorer 7 X|

__ i ?) When you send information to the Intemet, it might be
'-ﬁ possible for others to see that information. Do you want
to continue?

IV Inthe future, do not show this message.

Too many error messages

Internet Explorer X|

f 2) When you see a dialog box like this, click "Yes' to
" make it go away. If available, click the checkbox
first to avoid being bothered by it again.

[V In the future, do not show this message.

Yes No

(More) Complexity in the Therac-25 @

No atomic test-and-set

No hardware interlocks

How can we solve these things? @

Know your user
Fail-Soft (or Fail-Safe)

Audit Trail
Correctness from the start

Redundancy

Fail-Soft (or Fail-Safe)

def mutable rlist():
def dispatch(message, value=None):
nonlocal contents
iIT message == "Tirst":
return first(contents)
IT message == "rest”":
return rest(contents)
IT message == "len":
return len _rlist(contents)

return dispatch

Fail-Soft (or Fail-Safe)

def mutable rlist():
def dispatch(message, value=None):
nonlocal contents
iIT message == "Tirst":
return first(contents)
IT message == "rest”":
return rest(contents)
IT message == "len":
return len _rlist(contents)
else:
print("Unknown message”)
return dispatch

Correctness from the start @

Edsger Dijkstra: “On the Cruelty of Really
Teaching Computing Sciences”

CS students shouldn’t use computers

Rigorously prove correctness of their programs

Correctness proofs

Compilation (pre-execution) analysis

On debugging

Black box debugging

Glass box debugging

Don’t break what works

Golden rule of debugging...

Golden rule of debugging @

O0“Debug by subtraction, not by
addition”

Prof. Brian Harvey

