CS61A Lecture 25

Amir Kamil

UC Berkeley
March 20, 2013

Announcements @

0O HW8 due tonight at 7pm

O Midterm 2 Thursday at 7pm

See course website for more information

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Example: http://goo.gl/0h6nS

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
if type(tree) != tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
if type(tree) != tuple:
return fn(tree)
return tuple(map_tree(branch, fn)
for branch in tree)

Trees with Internal Node Values

af

Trees can have values at internal nodes as well as their leaves.

fib(6)

/ \

fib(4) fib(5)
/ AN
£ib(2) £ib(3)
|) 7/ f\ fib(3) fib(4)
1 fib(l) fib(2) o N / «
\ fib(1) fib(2) fib(2) £ib(3)
¢ : | | |7 N

o 1

1 fib(1) fib(2)

1

Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

class Tree(object):
def __init__(self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib_tree(n):

ifn==1:
return Tree(0)
ifn==2:

return Tree(1)
left = fib_tree(n - 2)
right = fib_tree(n - 1)
return Tree(left.entry + right.entry, left, right)

Memoization @

Tree recursive functions can compute the same thing many
times

Idea: Remember the results that have been computed before

def memo(F): Keys are arguments that]
:¢__map to return values
det memoized(n):

if n not in cache:
cache[n] = f(n)

Same behavior as F,
if is a pure function

Memoized Tree Recursion @

o Callto Fib
@ Found in cache

Q.
fib(3)

ib(2)

1 fib(1)
Q..,:

fib(35)
Calls to Fib with memoization:
Calls to Fib without memoization: 18,454,929

Sets @

Orders of Growth !Ef
Iterative, recursive, and memoized implementations are not the same.
Time Space
def fib_iter(n): G)(,;) G)(l)
prev, curr =1, 0
for _ in range(n - 1):
prev, curr = curr, prev + curr
return curr
def Fib(n): (—)((_;)”) (-)(u)
ifn==1:
return 0
ifn==2:
return 1
return fib(n - 2) + fib(n - 1)
fib = memo(Fib) G)(,}) Ga(fi)
Implementing Sets @

What we should be able to do with a set:

® Membership testing: Is a value an element of a set?

® Union: Return a set with all elements in set1 or set2

® Intersection: Return a set with any elements in set1 and set2
® Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
1 2 1 2 1
3 3 3 3 3 2
4 5 4 5 4
12 12
3 3 3

One more built-in Python container type

® Set literals are enclosed in braces

® Duplicate elements are removed on construction

® Sets are unordered, just like dictionary entries
>>> s = {3, 2, 1, 4, 4}

>>> s

{1, 2, 3, 4}
>>> 3 in s
True

>>> len(s)
4

>>> s.union({1, 5})

{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3, 4}

Sets as Unordered Sequences @

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

This is how we implemented dictionaries

def empty(s):
return s is Rlist.empty

def set_contains(s, Vv):
it empty(s):
return False
elif s.first == v:
return True
return set_contains(s.rest, v)

Sets as Unordered Sequences

af

Time order of growth

def adjoin_set(s, Vv):
if set_contains(s, Vv):
return s
return Rlist(v, s)

def intersect_set(setl, set2):
f = lambda v: set_contains(set2, v)
return filter_rlist(setl, f)

def union_set(setl, set2):
f = lambda v: not set_contains(set2, v)
setl_not_set2 = filter_rlist(setl, f)
return extend_rlist(setl_not_set2, set2)

The size of
the set
Assume sets are
the same size

O(n)

O(n?)

o(n?)

