CS61A Lecture 24

Amir Kamil and Hamilton Nguyen

UC Berkeley
March 18, 2013

Announcements @

O Ants project due tonight

0O HW8 due Wednesday at 7pm

O Midterm 2 Thursday at 7pm

See course website for more information

Closure Property of Data @

A tuple can contain another tuple as an element.
Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

— [2 G [A« [rone]

Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old): (1, (2, (3, (4, None))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Recursive List Class @

Methods can be recursive as well!

class Rlist(object):
class EmptyList(object):
fdef

There's the
base case!

empt;/ EmptyList()
def __init__(self, first, rest=empty):
self_first = first
self.rest = rest

fdef __len__(self): b - -
H return 1 + len(self.rest); Yes, this 'caII =
def _ getitem__ (self, i): IECANSIVE
if i ==0:

return self._first
return self.rest[i - 1]

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, R1list(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1l, Rlist(2, R1list(3)))))

def extend_rlist(sl, s2):
if sl is Rlist.empty:
return s2
return RIist(sl.first, extend_rlist(sl.rest, s2))

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
if s is Rlist.empty:
return s
return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
if s is Rlist.empty:
return s
rest = filter_rlist(s.rest, fn)
if fn(s.first):
return Rlist(s-first, rest)
return rest

Tree Structured Data @

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Example: http://g00.gl/0h6n5

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
if type(tree) != tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
if type(tree) != tuple:
return fn(tree)
return tuple(map_tree(branch, fn)
for branch in tree)

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(1, n + 1):
ifn%k==0: n
factors += 1
return factors

sqrt_n = sqrt(n)
k, factors =1, 0
while k < sgrt_n:
ifn%k==0:
factors += 2 n
o Wl
if k*k==n:
factors += 1
return factors

Trees with Internal Node Values @
Trees can have values at internal nodes as well as their leaves.
fib(6)
fib(4) £ib(5)
/ AN
fib(2) £ib(3)
| . 7 \ £ib(3) fib(4)
1 fib(1) fib(2) 4 N P N
‘ fib(1) fib(2) fib(2) £ib(3)
° ! | | |7 N
0 1 1 fib(1) fib(2)
1
Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)
R(n) = O(f(n))
means that there are positive constants kz and kz such that

ki f(n) < R(n) < ka2 f(n)

for sufficiently large values of n.

Constant Time: O(1) @

Time does not depend on input size.

def g(n):
return 42

def foo(n):
baz = 7
ifn>5:
baz += 5
return baz

def is_even(n):
return n % 2 == 0

Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.
Time

def fib_iter(n): @)(,;)
prev, curr =1, 0
for _ in range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): (—)(o")
ifn==1: '
return O
ifn==
return 1
return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time

factors = 0 D (-
for k in range(1, n + 1): ()(]})

ifn%k-==0:
factors += 1
return factors

sqrt_n = sqrt(n)
k, factors = 1, 0 -
while k < sqrt_n: ()(\/;?)
ifn%k==0:
factors += 2
k += 1
if k*k==n:
factors += 1
return factors

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): . _
o= 0 b 1 ifn=20

return 1 b-b* !t otherwise
return b * exp(b, n - 1)

def square(x): 1 ifn=0
return x * x .
b" = < (b2™)? if n is even
def fast_exp(b, n):
if n == 0: b-b""1 if n is odd
return 1
elifn% 2 == 0:
return square(fast_exp(b, n 7/ 2))
else:
return b * fast_exp(b, n - 1)

Exponentiation @

Goal: one more multiplication lets us double the problem size.

Time Space
def exp(b, n):
if n==0: O(n) O(n)
return 1
return b * exp(b, n - 1)
def square(x):
return x = x O(logn) O(logn)
def fast_exp(b, n):
if n==0:
return 1

elifn% 2 == 0:

return square(fast_exp(b, n 7/ 2))
else:

return b * fast_exp(b, n - 1)

The Consumption of Space @

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:
® Environments for any statements currently being executed

® Parent environments of functions named in active
environments

The Consumption of Space @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space
factors = 0 - -
for k in range(1, n + 1): ()(]}) ()(1)
ifn%k==0:

factors += 1
return factors

sqrt_n = sqrt(n)
k, factors = 1, 0 - -
whille k < sqrt_n: ()(\/;7) ()(1)
ifn%k==0:
factors += 2
k += 1
ifk*k==n:
factors += 1
return factors

Fibonacci Memory Consumption @

Fibonacci Memory Consumption @

Has an active environment
Can be reclaimed

fib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)
| / AN . .
1 fib(1) fib(2) y /ﬁb“)
\) fib(2) Fib(3)
[1 ya
1 1 fib(1) fib(2)
Assume we have e| 1|
reached this step
Iteration vs. Tree Recursion @
Iterative and recursive implementations are not the same.
Time Space
def Fib_iter(n): O(n) O(1)
prev, curr =1, 0
for _ in range(n - 1):
prev, curr = curr, prev + curr
return curr
def Fib(n): O(0") ©(n)
ifn==1:
return 0
ifn==2:
return 1

return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.

/ fib(6) \Hasn‘t yet been created
fib(4) fib(5)
e AN
fib(2) £ib(3)
/ N . .
1| Fib(1) Fib(2) /ﬁb(3) fib(4) N
\ fib(1) § i fib(3)
@ i /
) fib(1) fib(2)
Assume we have 9| 1‘
reached this step
Comparing Orders of Growth (nis problem size) @

©(b") / Exponential growth! Recursive fib takes
1+/5
2
Incrementing the problem scales R(n) by a factor.

O(¢") steps, where ¢ = ~ 1.61828

e(n®)-

©(n*) | Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) ' Linear growth. Resources scale with the problem.

o ﬁ),

O(logn) | Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

©(1) * Constant. The problem size doesn't matter.

