

CS61A Lecture 24

Amir Kamil and Hamilton Nguyen
UC Berkeley
March 18, 2013

Announcements

- ☐ Ants project due tonight
- ☐ HW8 due Wednesday at 7pm
- □ Midterm 2 Thursday at 7pm
 - ☐ See course website for more information

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:



Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old): (1, (2, (3, (4, None))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Recursive List Class


```
Methods can be recursive as well!
class Rlist(object):
   return 0
                          base case!
   empty = EmptyList()
   def __init__(self, first, rest=empty):
       self.first = first
       self.rest = rest
   def __len__(self):
                                  Yes, this call is
      return 1 + len(self.rest)
                                   recursive
   def __getitem__(self, i):
       if i == 0:
           return self.first
       return self.rest[i - 1]
```

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call on the rest of the list.

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

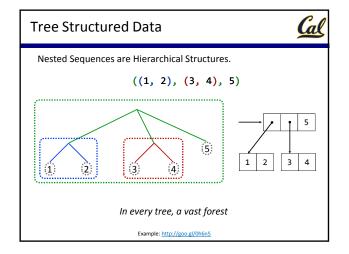
def extend_rlist(s1, s2):
    if s1 is Rlist.empty:
        return s2
    return Rlist(s1.first, extend_rlist(s1.rest, s2))
```

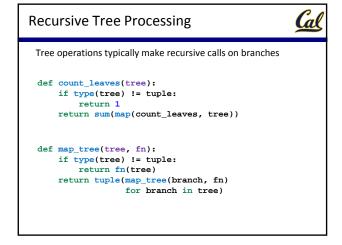
Map and Filter on Rlists

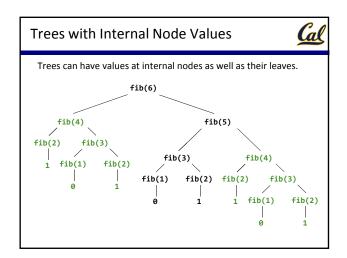
We want operations on a whole list, not an element at a time.

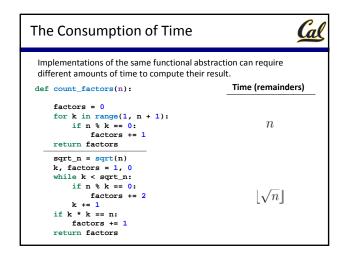
```
def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
    rest = filter_rlist(s.rest, fn)
    if fn(s.first):
        return Rlist(s.first, rest)
    return rest
```

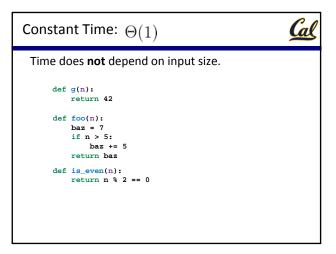








Order of Growth A method for bounding the resources used by a function as the "size" of a problem increases $m{n}$: size of the problem $m{R(n)}$: Measurement of some resource used (time or space) $m{R(n)} = \Theta(f(n))$ means that there are positive constants k_1 and k_2 such that $m{k}_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n)$ for sufficiently large values of $m{n}$.



Iteration vs. Tree Recursion (Time)

Iterative and recursive implementations are not the same.

```
\begin{array}{c} \text{def fib\_iter(n):} & & & \\ \text{prev, curr = 1, 0} & & \\ \text{for \_ in range(n - 1):} & & \\ \text{prev, curr = curr, prev + curr} \\ \\ \text{def fib(n):} & & \\ \text{if n == 1:} & & \\ \text{return 0} \\ \text{if n == 2:} & \\ \text{return 1} \\ \text{return fib(n - 2) + fib(n - 1)} \end{array}
```

Next time, we will see how to make recursive version faster.

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
                                                Time
    factors = 0
                                                \Theta(n)
    for k in range(1, n + 1):
        if n % k == 0:
             factors += 1
    return factors
    sqrt_n = sqrt(n)
    k, factors = 1, 0
while k < sqrt_n:</pre>
                                              \Theta(\sqrt{n})
        if n % k == 0:
        factors += 2
k += 1
    if k * k == n:
        factors += 1
    return factors
```

Exponentiation

Goal: one more multiplication lets us double the problem size.

```
 \begin{split} & \underset{\text{return 1}}{\text{def exp(b, n):}} & \underset{\text{return b * exp(b, n - 1)}}{\text{tf n = 0:}} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{otherwise} \end{cases} \\ \\ & \underset{\text{return k * x}}{\text{def square(x):}} & \\ & \underset{\text{return x * x}}{\text{tf n = 0:}} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \end{cases} \\ & \underset{\text{return 1}}{\text{def fast\_exp(b, n):}} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \end{cases} \\ & b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}   \begin{aligned} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \end{cases} \\ & b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}   \begin{aligned} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \end{cases} \\ & b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}   \begin{aligned} & b^n = \begin{cases} 1 & \text{if } n = 0 \\ (b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \end{cases} \end{aligned}
```

Exponentiation

Goal: one more multiplication lets us double the problem size.

```
Time
                                                        Space
def exp(b, n):
                                             \Theta(n)
                                                        \Theta(n)
    if n == 0:
        return 1
    return b * exp(b, n - 1)
def square(x):
    return x * x
                                          \Theta(\log n) \ \Theta(\log n)
def fast_exp(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(fast exp(b, n // 2))
        return b * fast_exp(b, n - 1)
```

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

The Consumption of Space

Implementations of the same functional abstraction can require different amounts of time to compute their result.

<pre>def count_factors(n):</pre>	Time	Space
<pre>factors = 0 for k in range(1, n + 1): if n % k == 0: factors += 1 return factors</pre>	$\Theta(n)$	$\Theta(1)$
<pre>sqrt_n = sqrt(n) k, factors = 1, 0 while k < sqrt_n: if n % k == 0: factors += 2</pre>	$\Theta(\sqrt{n})$	$\Theta(1)$
<pre>k += 1 if k * k == n: factors += 1 return factors</pre>		

