
CS61A Lecture 21

Amir Kamil
UC Berkeley

March 11, 2013

 HW7 due on Wednesday

 Ants project out

Announcements

Looking Up Names

Name expressions look up names in the environment

<expression> . <name>

Dot expressions look up names in an object

<name>

class CheckingAccount(Account):
 withdraw_fee = 1
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + withdraw_fee)

Error: withdraw_fee not
bound in environment

Not all languages work this way

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

Methods looked up from bottom to top, left to right
The mro method on a class lists the order in which classes are
checked for attributes

>>> [c.__name__ for c in AsSeenOnTVAccount.mro()]
['AsSeenOnTVAccount', 'CheckingAccount',
'SavingsAccount', 'Account', 'object']

The object class is at the root of the inheritance hierarchy
• object should be given as the base class when no other

meaningful base class exists

Class names should be in CamelCase

Error messages can be confusing when calling methods with the
wrong number of arguments:

OOP Odds and Ends

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100, 200)
TypeError: deposit() takes exactly 2 positional arguments (3 given)

>>> add3 = curry(add)(3)
>>> add3(4, 5)
TypeError: op_add expected 2 arguments, got 3

Compare to partially curried function:

Generic Functions

An abstraction might have more than one representation.

• Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations.

• Some representations are better suited to some problems

A function might want to operate on multiple data types.

Message passing enables us to accomplish all of the above, as
we will see today and next time

String Representations

An object value should behave like the kind of data it is meant
to represent;

For instance, by producing a string representation of itself.

Strings are important: they represent language and programs.

In Python, all objects produce two string representations:
• The “str” is legible to humans.
• The “repr” is legible to the Python interpreter.

When the “str” and “repr” strings are the same, that’s evidence
that a programming language is legible by humans!

The “repr” String for an Object

The result of calling repr on the value of an expression is what
Python prints in an interactive session.

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects don't have a simple Python-readable string.

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (as a string) that
evaluates to an equal object.

>>> repr(min)
'<built-in function min>'

The “str” String for an Object

Human interpretable strings are useful as well:

>>> import datetime
>>> today = datetime.date(2013, 3, 11)
>>> repr(today)
'datetime.date(2013, 3, 11)'
>>> str(today)
'2013-03-11'

The result of calling str on the value of an expression is what
Python prints using the print function.

Message Passing Enables Polymorphism

Polymorphic function: A function that can be applied to many
(poly) different forms (morph) of data

str and repr are both polymorphic; they apply to anything.

repr invokes a zero-argument method __repr__ on its
argument.

str invokes a zero-argument method __str__ on its argument.
(But str is a class, not a function!)

>>> today.__repr__()
'datetime.date(2012, 10, 8)'

>>> today.__str__()
'2012-10-08'

Inheritance also enables polymorphism, since subclasses provide
at least as much behavior as their base classes

Example of function that works on all accounts:

Inheritance and Polymorphism

def welfare(account):
 """Deposit $100 into an account if it has less
 than $100."""
 if account.balance < 100:
 return account.deposit(100)

>>> alice_account = CheckingAccount('Alice')
>>> welfare(alice_account)
100
>>> bob_account = SavingsAccount('Bob')
>>> welfare(bob_account)
98

Interfaces

Message passing allows different data types to respond to the
same message.

A shared message that elicits similar behavior from different
object classes is a powerful method of abstraction.

An interface is a set of shared messages, along with a
specification of what they mean.

Classes that implement __repr__ and __str__ methods
that return Python- and human-readable strings thereby
implement an interface for producing Python string
representations.

Classes that implement __len__ and __getitem__ are
sequences.

Python operators and generic functions make use of methods
with names like “__name__”

These are special or magic methods

Examples:

len __len__

+, += __add__, __iadd__

[], []= __getitem__, __setitem__

. __getattr__, __getattribute__,
 __setattr__

a[i] is equivalent to type(a).__getitem__(a, i)

Special Methods

Example: Rational Numbers

class Rational(object):
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numerator = numer // g
 self.denominator = denom // g
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numerator,
 self.denominator)
 def __str__(self):
 return '{0}/{1}'.format(self.numerator,
 self.denominator)
 def __add__(self, num):
 denom = self.denominator * num.denominator
 numer1 = self.numerator * num.denominator
 numer2 = self.denominator * num.numerator
 return Rational(numer1 + numer2, denom)
 def __eq__(self, num):
 return (self.numerator == num.numerator and
 self.denominator == num.denominator)

Property Methods

Often, we want the value of instance attributes to be linked.

>>> f = Rational(3, 5)
>>> f.float_value
0.6
>>> f.numerator = 4
>>> f.float_value
0.8
>>> f.denominator -= 3
>>> f.float_value
2.0

The @property decorator on a method designates that it will be
called whenever it is looked up on an instance.

It allows zero-argument methods to be called without an explicit
call expression.

@property
def float_value(self):
 return (self.numerator //
 self.denominator)

	CS61A Lecture 21
	Announcements
	Looking Up Names
	Resolving Ambiguous Class Attribute Names
	OOP Odds and Ends
	Generic Functions
	String Representations
	The “repr” String for an Object
	The “str” String for an Object
	Message Passing Enables Polymorphism
	Inheritance and Polymorphism
	Interfaces
	Special Methods
	Example: Rational Numbers
	Property Methods

