CS61A Lecture 20

Amir Kamil and Julia Oh
UC Berkeley
March 8, 2013

Announcements @

0O HW7 due on Wednesday

O Ants project out

Dot Expressions

¢4

Accessing Attributes @

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

om_account.deposit(10)

i | Dot expression

i< Call expression

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way
Looking up an attribute name in an object may return:
® One of its instance attributes, or

® One of the attributes of its class

Methods and Functions

af

Methods and Currying @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

>>> tom_account.deposit(1000)

2011

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method
from a function
def curry(f):
def outer(x):
def inner(*args):
return f(x, *args)
return inner

>>> add2 = curry(add)(2) return outer

>>> add2(3)
5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom_deposit(1000)
3011

Attributes, Functions, and Methods @ Looking Up Attributes by Name @

All objects have attributes, which are name-value pairs

<expression> . <name>

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects To evaluate a dot expression:

Class attributes: attributes of class objects 1. Evaluate the <expression>.

Terminology: Python object system: 2. <name> is matched against the instance attributes.
Functions are objects. 3
Bound methods are also objects: a

C!HSS . function that has its first parameter 4. That class attribute value is returned unless it is a
Aiflauiics "self" already bound to an instance. function, in which case a bound method is returned.

Dot expressions on instances
evaluate to bound methods for
class attributes that are functions.

Class Attributes @ Assignment to Attributes @
Class attributes are "shared" across all instances of a class Assignment statements with a dot expression on their left-hand
because they are attributes of the class, not the instance. side affect attributes for the object of that dot expression

class Account(object): ® |If the object is an instance, then assignment sets an instance

attribute
* |f the object is a class, then assignment sets a class attribute

interest = 0.02 # Class attribute

def __init__(self, account_holder):
self_balance = 0 # Instance attribute
self_holder = account_holder

Instance
Attribute
Additional methods would be defined here Assignment

. tom_account;

Attribute
assignment
statement adds
or modifies the

This expression evaluates to
an object

>>> tom_account = Account('Tom")

>>> jim_account = Account('Jim') A - - “interest”
>>> tom account.interest = But the name (“interest”) is not attribute of
0.02 interest is not part of the looked up tom_account
>>> jim_account.interest instance that was somehow Class Attribute -
0.02 copied from the class! Assignment : Account.interest = 0.04
Attribute Assignment Statements @ Inheritance @
Account class >|interest: B»eZ B+eZ 0.05 A technique for relating classes together
attributes (withdraw, deposit, _init_) Common use: Similar classes differ in amount of specialization
balance: © balance: © Two classes have overlapping attribute sets, but one represents
holder: 'Jim’ holder: 'Tom' a special case of the other.
interest: 0.08

class <name>(<base class>):

>>> jim_account = Account('Jim') | >>> jim_account.interest = 0.08 H

_ . . L . <suite>
>>> tom_account = Account('Tom') | >>> jim_account.interest
>>> tom_account.interest 0.08 . el s
0.02 >>> tom account.interest Conceptually, the new subclass "shares" attributes with its
>>> jim_account.interest 0.04 base class.
0.02 >>> Account.interest = 0.05 . L . .
>>> tom_account.interest s>> tom account.interest The subclass may override certain inherited attributes.
0.02 0.05 L . . e
s»> Account.interest = 0.04 >>> jim_account.interest Using inheritance, we implement a subclass by specifying its
>>> tom_account.interest 0.08 difference from the base class.
0.04

Inheritance Example @

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom")

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # Withdrawals incur a $1 fee

14

Most behavior is shared with the base class Account

class CheckingAccounth

A bank account i

withdraw_fee = 1

interest = 0.01

def withdraw(self, amount):
return Account.withdraw(self,

amount + self.withdraw_fee)

nat charges for withdrawals.

Looking Up Attribute Names on Classes @

Base class attributes aren't copied into subclasses!

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom"') # Calls Account.__init__

>>> ch.interest # Found in CheckingAccount
0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5) # Found in CheckingAccount
14

Designing for Inheritance @

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

Look up attributes on instances whenever possible.

class CheckingAccount(Account):
""" A bank account that charges for withdrawals.’
withdraw_fee = 1
interest = 0.01
def withdraw(self, amount):
return

Attribute look-up
on base class

Preferable alternative to
CheckingAccount.withdraw_fee

General Base Classes @

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

class Account(object):
v.v?:ﬁgizx_;eg ° 320 ﬂ/lay be overridden by subclassea
def withdraw(self, amount):
amount += self.withdraw_fee
it amount > self._balance:
return "Insufficient funds*®
self._balance = self.balance — amount
return self.balance

class CheckingAccount(Account):

interest = 0.01 " —
withdraw_fee = 1 <Noth|ngelse needed in this classj

Inheritance and Composition @

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.
E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.
E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of Account instances as an attribute.

No local state at all? Just write a pure function!

Multiple Inheritance @

class SavingsAccount(Account):
deposit_fee = 2
def deposit(self, amount):
return Account.deposit(self,
amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
sLow interest rate of 1%
A $1 fee for withdrawals
A $2 fee for deposits
*A free dollar when you open your account

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
def __init__(self, account_holder):
self.holder = account_holder
self.balance = 1 # A free dollar!

Multiple Inheritance @

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
SavingsAccount):
def __init__(self, account_holder):
self_holder = account_holder
self._balance = 1 # A free dollar!

Instance attribute | >>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance

Sa

gsAccount

method >>> such_a_deal.deposit(20)

19
>>> such_a_deal.withdraw(5)

CheckingAccount

method

Resolving Ambiguous Class Attribute Names @

|CheckingAccount| ISavingsAccountl

AsSeenOnTVAccount

ute | >>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance

SavingsAccount

method >>> such_a_deal.deposit(20)

19

Chedl such_a_deal.withdraw(5)

Human Relationships @

Some_Guy | Grandma Grandpa

\Gr/andaddy Gramammy

Double Half Aunt Mom Dad Double Half Uncle

Some_D'ude\ ’ \ /

Quadouple Half Cousin You

