
CS61A Lecture 20

Amir Kamil and Julia Oh
UC Berkeley

March 8, 2013

 HW7 due on Wednesday

 Ants project out

Announcements

Dot Expressions

Dot Expressions

Objects receive messages via dot notation

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

 tom_account.deposit(10)

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

 tom_account.deposit(10)

Dot expression

Dot expression

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

 <expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

 tom_account.deposit(10)

Dot expression Call expression

Accessing Attributes

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

Methods and Functions

Methods and Functions

Python distinguishes between:

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method

>>> type(Account.deposit)

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method
>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method
>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method
>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method
>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1000)

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.
 Object + Function = Bound Method
>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

 >>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1000)
2011

Methods and Currying

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
 def outer(x):
 def inner(*args):
 return f(x, *args)
 return inner
 return outer

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
 def outer(x):
 def inner(*args):
 return f(x, *args)
 return inner
 return outer >>> add2 = curry(add)(2)

>>> add2(3)
5

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method
from a function

 def curry(f):
 def outer(x):
 def inner(*args):
 return f(x, *args)
 return inner
 return outer >>> add2 = curry(add)(2)

>>> add2(3)
5

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method
from a function

 def curry(f):
 def outer(x):
 def inner(*args):
 return f(x, *args)
 return inner
 return outer >>> add2 = curry(add)(2)

>>> add2(3)
5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom_deposit(1000)
3011

Attributes, Functions, and Methods

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Terminology:

Attributes, Functions, and Methods

Class
Attributes

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Terminology:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Terminology:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Terminology:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Terminology: Python object system:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Functions are objects.

Terminology: Python object system:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Functions are objects.

Bound methods are also objects: a
function that has its first parameter
"self" already bound to an instance.

Terminology: Python object system:

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Functions are objects.

Bound methods are also objects: a
function that has its first parameter
"self" already bound to an instance.

Dot expressions on instances
evaluate to bound methods for
class attributes that are functions.

Terminology: Python object system:

Looking Up Attributes by Name

<expression> . <name>

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

3. If not found, <name> is looked up in the class.

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

3. If not found, <name> is looked up in the class.

4. That class attribute value is returned unless it is a
function, in which case a bound method is returned.

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

3. If not found, <name> is looked up in the class.

4. That class attribute value is returned unless it is a
function, in which case a bound method is returned.

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.
class Account(object):

 interest = 0.02 # Class attribute

 def __init__(self, account_holder):
 self.balance = 0 # Instance attribute
 self.holder = account_holder

 # Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest is not part of the
instance that was somehow

copied from the class!

Assignment to Attributes

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

This expression evaluates to
an object

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”) is not
looked up

This expression evaluates to
an object

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”) is not
looked up

Attribute
assignment

statement adds
or modifies the

“interest”
attribute of

tom_account

This expression evaluates to
an object

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”) is not
looked up

Attribute
assignment

statement adds
or modifies the

“interest”
attribute of

tom_account

Instance
Attribute

Assignment
:

This expression evaluates to
an object

Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance

attribute
• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”) is not
looked up

Attribute
assignment

statement adds
or modifies the

“interest”
attribute of

tom_account

Instance
Attribute

Assignment
:

Account.interest = 0.04
Class Attribute

Assignment
:

This expression evaluates to
an object

Attribute Assignment Statements

Attribute Assignment Statements

Attribute Assignment Statements

interest: 0.02

Attribute Assignment Statements

interest: 0.02
(withdraw, deposit, __init__)

Attribute Assignment Statements

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Inheritance

Inheritance

A technique for relating classes together

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Two classes have overlapping attribute sets, but one represents
a special case of the other.

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Two classes have overlapping attribute sets, but one represents
a special case of the other.

 class <name>(<base class>):
 <suite>

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Two classes have overlapping attribute sets, but one represents
a special case of the other.

 class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its
base class.

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Two classes have overlapping attribute sets, but one represents
a special case of the other.

 class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its
base class.

The subclass may override certain inherited attributes.

Inheritance

A technique for relating classes together

Common use: Similar classes differ in amount of specialization

Two classes have overlapping attribute sets, but one represents
a special case of the other.

 class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its
base class.

The subclass may override certain inherited attributes.

Using inheritance, we implement a subclass by specifying its
difference from the base class.

Inheritance Example

A CheckingAccount is a specialized type of Account.

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account
class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account.
>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account
class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount

Base class attributes aren't copied into subclasses!

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

 >>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

Designing for Inheritance

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations.

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

Look up attributes on instances whenever possible.

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

Look up attributes on instances whenever possible.

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

Look up attributes on instances whenever possible.

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self,
 amount + self.withdraw_fee)

Attribute look-up
on base class Preferable alternative to

CheckingAccount.withdraw_fee

General Base Classes

General Base Classes

Base classes may contain logic that is meant for subclasses.

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

 def withdraw(self, amount):

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

 def withdraw(self, amount):

 if amount > self.balance:

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

 def withdraw(self, amount):

 if amount > self.balance:
 return 'Insufficient funds'

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

 def withdraw(self, amount):

 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02

 def withdraw(self, amount):

 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):

 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

class CheckingAccount(Account):

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

class CheckingAccount(Account):
 interest = 0.01

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

class CheckingAccount(Account):
 interest = 0.01
 withdraw_fee = 1

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

class CheckingAccount(Account):
 interest = 0.01
 withdraw_fee = 1

May be overridden by subclasses

General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

 class Account(object):
 interest = 0.02
 withdraw_fee = 0
 def withdraw(self, amount):
 amount += self.withdraw_fee
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance – amount
 return self.balance

class CheckingAccount(Account):
 interest = 0.01
 withdraw_fee = 1

May be overridden by subclasses

Nothing else needed in this class

Inheritance and Composition

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of Account instances as an attribute.

Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of Account instances as an attribute.

No local state at all? Just write a pure function!

Multiple Inheritance

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
•Low interest rate of 1%

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
•Low interest rate of 1%
•A $1 fee for withdrawals

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
•Low interest rate of 1%
•A $1 fee for withdrawals
•A $2 fee for deposits

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
•Low interest rate of 1%
•A $1 fee for withdrawals
•A $2 fee for deposits
•A free dollar when you open your account

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self,
 amount - self.deposit_fee)

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

A class may inherit from multiple base classes in Python.
CleverBank marketing executive wants:
•Low interest rate of 1%
•A $1 fee for withdrawals
•A $2 fee for deposits
•A free dollar when you open your account

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Instance attribute

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Instance attribute

SavingsAccount
method

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount,
 SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Instance attribute

SavingsAccount
method

CheckingAccount
method

Resolving Ambiguous Class Attribute Names

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Instance attribute

SavingsAccount
method

CheckingAccount
method

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

>>> such_a_deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance
1
>>> such_a_deal.deposit(20)
19
>>> such_a_deal.withdraw(5)
13

Instance attribute

SavingsAccount
method

CheckingAccount
method

Human Relationships

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Mom Dad

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Mom Dad

You

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Some_Guy

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Half

Some_Guy

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Half

Some_Guy

Half Cousin

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Half

Some_Guy

Half Cousin

Some_Dude

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Half

Half Cousin

Some_Dude

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Mom Dad

You

Half

Half Cousin

Some_Dude

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double Mom Dad

You

Half

Half Cousin

Some_Dude

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double Mom Dad

You

Half

Half Cousin

Some_Dude

Double

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double Mom Dad

You

Half Double Half Uncle

Half Cousin

Some_Dude

Double

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double Mom Dad

You

Half Double Half Uncle

Half Cousin

Some_Dude

Double

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double Mom Dad

You

Half Double Half Uncle

Half Cousin Double

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin Double

Human Relationships

Grandma Grandpa Gramammy Grandaddy

Aunt Double

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin

	CS61A Lecture 20
	Announcements
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Dot Expressions
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Accessing Attributes
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Currying
	Methods and Currying
	Methods and Currying
	Methods and Currying
	Methods and Currying
	Methods and Currying
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Attributes, Functions, and Methods
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Looking Up Attributes by Name
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Class Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Assignment to Attributes
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Attribute Assignment Statements
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Looking Up Attribute Names on Classes
	Designing for Inheritance
	Designing for Inheritance
	Designing for Inheritance
	Designing for Inheritance
	Designing for Inheritance
	Designing for Inheritance
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	General Base Classes
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Inheritance and Composition
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Resolving Ambiguous Class Attribute Names
	Resolving Ambiguous Class Attribute Names
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships
	Human Relationships

