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Accessing Attributes 

Using getattr, we can look up an attribute using a string, just 
as we did with a dispatch function/dictionary 

>>> getattr(tom_account, 'balance') 
10 

>>> hasattr(tom_account, 'deposit') 
True 

 
getattr and dot expressions look up a name in the same way 

Looking up an attribute name in an object may return: 

• One of its instance attributes, or 

• One of the attributes of its class 
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Methods and Functions 

Python distinguishes between: 
• Functions, which we have been creating since the 

beginning of the course, and  
• Bound methods, which couple together a function and the 

object on which that method will be invoked. 
 Object  +  Function  =  Bound Method 
>>> type(Account.deposit) 
<class 'function'> 
>>> type(tom_account.deposit) 
<class 'method'> 

 >>> Account.deposit(tom_account, 1001) 
1011 
>>> tom_account.deposit(1000) 
2011 
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Methods and Currying 

Earlier, we saw currying, which converts a function that takes in 
multiple arguments into multiple chained functions. 

The same procedure can be used to create a bound method 
from a function 

 def curry(f): 
    def outer(x): 
        def inner(*args): 
            return f(x, *args) 
        return inner 
    return outer >>> add2 = curry(add)(2) 

>>> add2(3) 
5 
 
>>> tom_deposit = curry(Account.deposit)(tom_account) 
>>> tom_deposit(1000) 
3011 
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Class 
Attributes 

 

Functions 
 

All objects have attributes, which are name-value pairs 

Classes are objects too, so they have attributes 

Instance attributes: attributes of instance objects 

Class attributes: attributes of class objects 

 

Methods 

Functions are objects. 

Bound methods are also objects: a 
function that has its first parameter 
"self" already bound to an instance. 

Dot expressions on instances 
evaluate to bound methods for 
class attributes that are functions. 
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Class attributes are "shared" across all instances of a class 
because they are attributes of the class, not the instance. 
class Account(object): 

    interest = 0.02        # Class attribute 
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interest is not part of the 
instance that was somehow 

copied from the class! 
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side affect attributes for the object of that dot expression 
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attribute 
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But the name (“interest”) is not 
looked up 
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Instance 
Attribute 
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Account.interest = 0.04 
Class Attribute 

Assignment 
: 

This expression evaluates to 
an object 
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Designing for Inheritance 

Don't repeat yourself; use existing implementations. 

Attributes that have been overridden are still accessible via 
class objects. 

Look up attributes on instances whenever possible. 

 
class CheckingAccount(Account): 
    """A bank account that charges for withdrawals.""" 
    withdraw_fee = 1 
    interest = 0.01 
    def withdraw(self, amount): 
        return Account.withdraw(self, 
                                amount + self.withdraw_fee) 

Attribute look-up 
on base class Preferable alternative to 

CheckingAccount.withdraw_fee 
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General Base Classes 

Base classes may contain logic that is meant for subclasses. 

Example: Same CheckingAccount behavior; different 
approach 

 class Account(object): 
    interest = 0.02 
    withdraw_fee = 0 
    def withdraw(self, amount): 
        amount += self.withdraw_fee 
        if amount > self.balance: 
            return 'Insufficient funds' 
        self.balance = self.balance – amount 
        return self.balance 
 
class CheckingAccount(Account): 
    interest = 0.01 
    withdraw_fee = 1 
 

May be overridden by subclasses 

Nothing else needed in this class 
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Inheritance and Composition 

Object-oriented programming shines when we adopt the 
metaphor. 

Inheritance is best for representing is-a relationships. 

E.g., a checking account is a specific type of account. 

So, CheckingAccount inherits from Account. 

Composition is best for representing has-a relationships. 

E.g., a bank has a collection of bank accounts it manages. 

So, A bank has a list of Account instances as an attribute. 

No local state at all?  Just write a pure function! 
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Multiple Inheritance 
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