
CS61A Lecture 19

Amir Kamil
UC Berkeley

March 6, 2013

 HW6 due tomorrow

 Ants project out

Announcements

Mutable Recursive Lists

def mutable_rlist():
 contents = empty_rlist
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'len':
 return len_rlist(contents)
 elif message == 'getitem':
 return getitem_rlist(contents, value)
 elif message == 'push':
 contents = make_rlist(value, contents)
 elif message == 'pop':
 item = first(contents)
 contents = rest(contents)
 return item
 elif message == 'str':
 return str_rlist(contents)
 return dispatch

Building Dictionaries with Lists

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

 records = [['cain', 2.79],
 ['bumgarner', 3.37],
 ['vogelsong', 3.37],
 ['lincecum', 5.18],
 ['zito', 4.15]]

Dictionary operations:

• getitem(key): Look at each record until we find a stored
key that matches key

• setitem(key, value): Check if there is a record with
the given key. If so, change the stored value to value. If not,
add a new record that stores key and value.

Implementing Dictionaries
def dictionary():
 """Return a functional implementation of a dictionary."""
 records = []

 def getitem(key):
 for k, v in records:
 if k == key:
 return v

 def setitem(key, value):
 for item in records:
 if item[0] == key:
 item[1] = value
 return
 records.append([key, value])

 def dispatch(message, key=None, value=None):
 if message == 'getitem':
 return getitem(key)
 elif message == 'setitem':
 setitem(key, value)
 elif message == 'keys':
 return tuple(k for k, _ in records)
 elif message == 'values':
 return tuple(v for _, v in records)

 return dispatch

Question: Do we need a nonlocal
statement here?

Dispatch Dictionaries

Enumerating different messages in a conditional statement isn't
very convenient:

• Equality tests are repetitive

• We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.

An Account as a Dispatch Dictionary

def account(balance):
 """Return an account that is represented as a
 dispatch dictionary."""

 def withdraw(amount):
 if amount > dispatch['balance']:
 return 'Insufficient funds'
 dispatch['balance'] -= amount
 return dispatch['balance']

 def deposit(amount):
 dispatch['balance'] += amount
 return dispatch['balance']

 dispatch = {'balance': balance, 'withdraw': withdraw,
 'deposit': deposit}

 return dispatch

Question: Why
dispatch['balance']

and not balance?

The Story So Far About Data

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include
many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

Object-Oriented Programming

A method for organizing modular programs

• Abstraction barriers

• Message passing

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state.

• Each object also knows how to manage its own local state,
based on the messages it receives.

• Several objects may all be instances of a common type.

• Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor

Classes

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Better idea: All bank accounts share
a "withdraw" method.

The Class Statement

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

As soon as an instance is created, it is passed to __init__,
which is an attribute of the class.

class <name>(<base class>):
 <suite>

class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

Next lecture

Initialization

When a class is called:
1. A new instance of that class is created:
2. The constructor __init__ of the class is called with the new

object as its first argument (called self), along with additional
arguments provided in the call expression.

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

Object Identity

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a
unique identity:

Binding an object to a new name using assignment does not
create a new object:

Identity testing is performed by "is" and "is not" operators:

>>> c = a
>>> c is a
True

Methods

Methods are defined in the suite of a class statement
class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

Invoking Methods

All invoked methods have access to the object via the self
parameter, and so they can all access and manipulate the
object's state.

class Account(object):
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to
a method.

Invoked with one argument

Called with two arguments

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

tom_account.deposit(10)

Dot expression Call expression

Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the

beginning of the course, and
• Bound methods, which couple together a function and the

object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1000)
2011

Methods and Currying

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method
from a function

def curry(f):
 def outer(x):
 def inner(*args):
 return f(x, *args)
 return inner
 return outer >>> add2 = curry(add)(2)

>>> add2(3)
5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom_deposit(1000)
3011

	CS61A Lecture 19
	Announcements
	Mutable Recursive Lists
	Building Dictionaries with Lists
	Implementing Dictionaries
	Dispatch Dictionaries
	An Account as a Dispatch Dictionary
	The Story So Far About Data
	Object-Oriented Programming
	Classes
	The Class Statement
	Initialization
	Object Identity
	Methods
	Invoking Methods
	Dot Expressions
	Accessing Attributes
	Methods and Functions
	Methods and Currying

