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Announcements

HWG6 due tomorrow

Ants project out



Mutable Recursive Lists

def mutable rlist():
contents = empty _rlist
def dispatch(message, value=None):
nonlocal contents

iIT message == "len”:

return len rlist(contents)
elifT message == "getitem”:

return getitem rlist(contents, value)
eliT message == "push”:

contents = make rlist(value, contents)
eliT message == "pop-:

item = Tirst(contents)
contents = rest(contents)
return 1tem
elifT message == "“str-:
return str_rlist(contents)
return dispatch
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Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
[ "bumgarner®, 3.37],
[ "vogelsong®, 3.37],
["lincecum™, 5.18],
["zitOo", 4_.15]]

Dictionary operations:

egetitem(key): Look at each record until we find a stored
key that matches key

esetitem(key, value): Checkif thereis a record with the
given key. If so, change the stored value to value. If not, add a
new record that stores key and value.



Implementing Dictionaries




Implementing Dictionaries

def dictionary():



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary."""
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary."""
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:

setitem(key, value)



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:

setitem(key, value)
elif message == "keys":



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)
return dispatch



Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:

It k == key:
return v
def setitem(key, value):
for 1tem In records: P
if item[0] == Key: Question: Do we need a nonlocal
item[1] = value statement here?
return

records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)
return dispatch
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Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive

® We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.
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An Account as a Dispatch Dictionary Qf

def account(balance):

""" Return an account that Is represented as a
dispatch diCtionary_ llllll

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds},
dispatch[ "balance”] -= amount Question: Why

return dispatch["balance®™] < dispatch['balance']

. and not balance? )
def deposit(amount):

dispatch["balance”] += amount
return dispatch["balance”]

\

dispatch = {"balance®: balance, “"withdraw®: withdraw,
“deposit”: deposit}

return dispatch
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Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include

many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)
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A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

® Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor
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A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
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Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim")
>>> a.holder
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>>> a.balance

>>> a.deposit(15)

15

>>> a.withdraw(10)
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A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

Better idea: All bank accounts share
a "withdraw" method.

>>> a = Account('Jim")
>>> a.holder

"Jim'

>>> a.balance

>>> a.deposit(15)

15

>>> a.withdraw(10)

5

>>> a.balance

5

>>> a.withdraw(10)
"Insufficient funds'
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<suite>
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------------------------------------------

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto  Init
which is an attribute of the class.

class Account(object):
def 1nit_ (self, account holder):
self.balance = 0O
self._holder = account holder
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Initialization

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim")

>>> a.holder usssssssssssssssssssssssssssssssssssssssssssssses,
"Jim'

>>> a.balance

0

When a class is called:

1. A new instance of that class is created:

2. Theconstructor Init  of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

class Account(ObJect) . .......cccoiccineerrsssmeenssssnnnnss®
def init (selff account _holder):
»
Self_balance — O .......................

self.holder = account holder
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Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")
>>> b = Account('Jack’)

ldentity testing is performed by "is" and "is not" operators:

>>> a 1s a
True

>>> a 1s not b
True

Binding an object to a new name using assignment does not
create a new object:
>>> € = a

>>> C 1s a
True
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Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

return “Insufficient funds-®

self.balance = self.balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.
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All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object): ( Called with two arguments )

-----------------------------------

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

Dot notation automatically supplies the first argument to
a method.

>>> tom_account = Account('Tom")
>>> tom_account.deposit(100)
100 )

Llnvoked with one argument)
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Dot Expressions

Objects receive messages via dot notation
Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

------------------------------------------------------------------

-----------------------------------------------------
4

tom account. dep051t(1@)

..................... it et
: . < Call expression )
(Dot expressmn)

*
------------------------------------------------------------------
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Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a hame in the same way
Looking up an attribute name in an object may return:
® One of its instance attributes, or

® (One of the attributes of its class
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Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)
1011

>>> tom_account.deposit(1000)

2011



Methods and Currying




Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.



Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner
return outer



Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner

>>> add2 = curry(add)(2) return outer

>>> add2(3)
5



Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method

from a function
def curry(f):
def outer(Xx):
def 1nner(**args):
return (X, *args)

return inner
>>> add2 = curry(add)(2) return outer
>>> add2(3)
5



Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method

from a function
def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner

>>> add2 = curry(add)(2) return outer
>>> add2(3)

5

>>> tom _deposit = curry(Account.deposit)(tom account)
>>> tom _deposit(1000)
3011



