CS61A Lecture 19

Amir Kamil
UC Berkeley
March 6, 2013

Announcements

HWG6 due tomorrow

Ants project out

Mutable Recursive Lists

def mutable rlist():
contents = empty _rlist
def dispatch(message, value=None):
nonlocal contents

iIT message == "len”:

return len rlist(contents)
elifT message == "getitem”:

return getitem rlist(contents, value)
eliT message == "push”:

contents = make rlist(value, contents)
eliT message == "pop-:

item = Tirst(contents)
contents = rest(contents)
return 1tem
elifT message == "“str-:
return str_rlist(contents)
return dispatch

Building Dictionaries with Lists @

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
["bumgarner®, 3.37],
["vogelsong®, 3.37],
["lincecum™, 5.18],
["zitOo", 4_.15]]

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
["bumgarner®, 3.37],
["vogelsong®, 3.37],
["lincecum™, 5.18],
["zitOo", 4_.15]]

Dictionary operations:

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
["bumgarner®, 3.37],
["vogelsong®, 3.37],
["lincecum™, 5.18],
["zitOo", 4_.15]]

Dictionary operations:

egetitem(key): Look at each record until we find a stored
key that matches key

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
["bumgarner®, 3.37],
["vogelsong®, 3.37],
["lincecum™, 5.18],
["zitOo", 4_.15]]

Dictionary operations:

egetitem(key): Look at each record until we find a stored
key that matches key

esetitem(key, value): Checkif thereis a record with the
given key. If so, change the stored value to value. If not, add a
new record that stores key and value.

Implementing Dictionaries

Implementing Dictionaries

def dictionary():

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary."""
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary."""
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:

setitem(key, value)

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:

setitem(key, value)
elif message == "keys":

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):
IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:
It k == key:
return v
def setitem(key, value):
for 1tem In records:
1T 1tem[0] == key:
item[1] = value
return
records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)
return dispatch

Implementing Dictionaries

def dictionary():
""" Return a functional implementation of a dictionary.
records = []
def getitem(key):
for k, v In records:

It k == key:
return v
def setitem(key, value):
for 1tem In records: P
if item[0] == Key: Question: Do we need a nonlocal
item[1] = value statement here?
return

records.append([key, value])
def dispatch(message, key=None, value=None):

IT message == "getitem”:
return getitem(key)
elif message == “setitem”:
setitem(key, value)
elif message == "keys":
return tuple(k for k, _ 1In records)
eliT message == "values”:

return tuple(v for _, v iIn records)
return dispatch

Dispatch Dictionaries

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive

® We can't add new messages without writing new code

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive
® We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive

® We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.

An Account as a Dispatch Dictionary @

An Account as a Dispatch Dictionary @

def account(balance):

An Account as a Dispatch Dictionary @

def account(balance):
""" Return an account that Is represented as a

dispatch dictionary.

An Account as a Dispatch Dictionary @

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary."""

def withdraw(amount):

An Account as a Dispatch Dictionary Qf

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary."""

def withdraw(amount):
1T amount > dispatch|[“balance™]:

An Account as a Dispatch Dictionary Qf

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary.'"""

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*

An Account as a Dispatch Dictionary Qf

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary.'"""

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount

An Account as a Dispatch Dictionary Qf

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary.'"""

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

An Account as a Dispatch Dictionary @

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary.'"""

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

def deposit(amount):

An Account as a Dispatch Dictionary @

def account(balance):
""" Return an account that Is represented as a
dispatch dictionary.'"""

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

def deposit(amount):
dispatch["balance”] += amount

An Account as a Dispatch Dictionary @

def account(balance):

""" Return an account that Is represented as a
dispatch diCtionary_ llllll

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

def deposit(amount):
dispatch["balance”] += amount
return dispatch["balance”]

An Account as a Dispatch Dictionary @

def account(balance):

""" Return an account that Is represented as a
dispatch diCtionary_ llllll

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

def deposit(amount):
dispatch["balance”] += amount
return dispatch["balance”]

dispatch = {"balance®: balance, “"withdraw®: withdraw,
“deposit”: deposit}

An Account as a Dispatch Dictionary @

def account(balance):

""" Return an account that Is represented as a
dispatch diCtionary_ llllll

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds*
dispatch["balance”] -= amount
return dispatch["balance”]

def deposit(amount):
dispatch["balance”] += amount
return dispatch["balance”]

dispatch = {"balance®: balance, “"withdraw®: withdraw,
“deposit”: deposit}

return dispatch

An Account as a Dispatch Dictionary Qf

def account(balance):

""" Return an account that Is represented as a
dispatch diCtionary_ llllll

def withdraw(amount):
1T amount > dispatch|[“balance™]:
return "Insufficient funds},
dispatch["balance”] -= amount Question: Why

return dispatch["balance®™] < dispatch['balance']

. and not balance?)
def deposit(amount):

dispatch["balance”] += amount
return dispatch["balance”]

\

dispatch = {"balance®: balance, “"withdraw®: withdraw,
“deposit”: deposit}

return dispatch

The Story So Far About Data

The Story So Far About Data @

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

The Story So Far About Data @

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

The Story So Far About Data @

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

The Story So Far About Data @

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include

many different (but related) behaviors that all manipulate
the same local state.

The Story So Far About Data @

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include

many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

Object-Oriented Programming @

Object-Oriented Programming @

A method for organizing modular programs

Object-Oriented Programming @

A method for organizing modular programs

® Abstraction barriers

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers

® Message passing

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state

® Each object has its own local state.

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

® Different types may relate to each other as well.

Object-Oriented Programming @

A method for organizing modular programs
® Abstraction barriers
® Message passing

® Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

® Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor

Classes

Classes @

A class serves as a template for its instances.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

>>> a = Account('Jim")

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s»> a = Account('Jim")
balance and an account holder; the >s> 3.holder

Account class should add those

attributes to each newly created

Instance.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s»> a = Account('Jim")
balance and an account holder; the >s> 3.holder

Account class should add those ‘Jim’

attributes to each newly created

Instance.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those ‘Jim’
attributes to each newly created >>> a.balance

instance.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those ‘Jim’
attributes to each newly created >>> a.balance

instance. 0

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those ‘Jim’
attributes to each newly created >>> a.balance
instance. 9

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 9

Idea: All bank accounts should have >>> a.deposit(15)

"withdraw" and "deposit" behaviors
that all work in the same way.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 9

Idea: All bank accounts should have >>> a.deposit(15)

"withdraw" and "deposit" behaviors 15

that all work in the same way.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 9

Idea: All bank accounts should have >>> a.deposit(15)

15

"withdraw" and "deposit" behaviors ,
>>> a.withdraw(10)

that all work in the same way.

Classes @

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim')

balance and an account holder; the >s> 3.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 9

Idea: All bank accounts should have >>> a.deposit(15)

"withdraw" and "deposit" behaviors 15 ,
>>> a.withdraw(10)

that all work in the same way. c

Classes

(af

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim")
>>> a.holder

"Jim'

>>> a.balance

>>> a.deposit(15)
15
>>> a.withdraw(10)

>>> a.balance

Classes

(af

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim")
>>> a.holder

"Jim'

>>> a.balance

>>> a.deposit(15)
15
>>> a.withdraw(10)

>>> a.balance

Classes

(af

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a
>>> a.
"Jim’
>>> a.

>>> a
15
>>> a

>>> a.

>>> a

= Account('Jim")
holder

balance

.deposit(15)

.withdraw(10)

balance

.withdraw(10)

Classes

(af

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim")
>>> a.holder

"Jim'

>>> a.balance

>>> a.deposit(15)

15

>>> a.withdraw(10)

5

>>> a.balance

5

>>> a.withdraw(10)
"Insufficient funds'

Classes

(af

A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

Better idea: All bank accounts share
a "withdraw" method.

>>> a = Account('Jim")
>>> a.holder

"Jim'

>>> a.balance

>>> a.deposit(15)

15

>>> a.withdraw(10)

5

>>> a.balance

5

>>> a.withdraw(10)
"Insufficient funds'

The Class Statement

The Class Statement

class <name>(<base class>):
<suite>

The Class Statement @

>1)
<suirte> ﬁNext Iecture]

The Class Statement @

>1)
<suirte> ﬁNext Iecture]

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

The Class Statement @

>:)
<suirte> ﬁNext Iecture]

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

The Class Statement

--

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto Init
which is an attribute of the class.

The Class Statement

--

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto Init
which is an attribute of the class.

class Account(object):

The Class Statement

--

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto Init
which is an attribute of the class.

class Account(object):
def 1nit_ (self, account holder):

The Class Statement

--

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto Init
which is an attribute of the class.

class Account(object):
def 1nit_ (self, account holder):
self.balance = 0O

The Class Statement

--

<suirte>

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <su 1 te> create attributes of the class.

As soon as an instance is created, itis passedto Init
which is an attribute of the class.

class Account(object):
def 1nit_ (self, account holder):
self.balance = 0O
self._holder = account holder

Initialization

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')
>>> a.holder

"Jim'

>>> a.balance

%)

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')
>>> a.holder

"Jim'

>>> a.balance

%)

When a class is called:

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')

>>> a.holder

"Jim’

>>> a.balance

0

When a class is called:

1. A new instance of that class is created:

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')

>>> a.holder

"Jim’

>>> a.balance

0

When a class is called:
1. A new instance of that class is created:

2. Theconstructor Init of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')

>>> a.holder

"Jim’

>>> a.balance

0

When a class is called:

1. A new instance of that class is created: -

2. Theconstructor Init of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

Initialization @

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')

>>> a.holder

"Jim’

>>> a.balance

0

When a class is called:

1. A new instance of that class is created: -

2. Theconstructor Init of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

class Account(object):
def 1nit_ (self, account holder):
self._balance = 0
self.holder = account holder

Initialization

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')
>>> a.holder

"Jim'

>>> a.balance

%)

When a class is called:

1. A new instance of that class is created:

2. Theconstructor Init of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

class ACCOUNT(ODFECE) :...umeiereeeeeereseseseeseseses s
def __init__(selff account_holder):
self._balance = 0

self.holder = account holder

Initialization

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim")

>>> a.holder usses,
"Jim'

>>> a.balance

0

When a class is called:

1. A new instance of that class is created:

2. Theconstructor Init of theclassis called with the new
object as its first argument (called sel T), along with additional
arguments provided in the call expression.

class Account(ObJect)cccoiccineerrsssmeenssssnnnnss®
def init (selff account _holder):
»
Self_balance — O

self.holder = account holder

Object Identity

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>>

a count('Jim")
>>> b

Ac
Account('Jack")

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>> a
>>> b

Account('Jim")
Account('Jack")

ldentity testing is performed by "is" and "is not" operators:

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")

>>> b = Account('Jack’)

ldentity testing is performed by "is" and "is not" operators:

>>> a 1s a
True

>>> a 1s not b
True

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")
>>> b = Account('Jack’)

ldentity testing is performed by "is" and "is not" operators:

>>> a 1s a
True

>>> a 1s not b
True

Binding an object to a new name using assignment does not
create a new object:

Object Identity @

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")
>>> b = Account('Jack’)

ldentity testing is performed by "is" and "is not" operators:

>>> a 1s a
True

>>> a 1s not b
True

Binding an object to a new name using assignment does not
create a new object:
>>> € = a

>>> C 1s a
True

Methods

Methods @

Methods are defined in the suite of a class statement

Methods @

Methods are defined in the suite of a class statement

class Account(object):

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account _holder):

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account _holder):
self.balance = 0

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account _holder):
self.balance = 0
self.holder = account_holder

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account holder):
self.balance = 0
self.holder = account holder
def deposit(self, amount):

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder
def deposit(self, amount):
self.balance = self.balance + amount

Methods @

Methods are defined in the suite of a class statement

class Account(object):
def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder
def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account holder

def deposit(self, amount):
self.balance = self.balance + amount
return self._balance

def withdraw(self, amount):

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

return "Insufficient funds*

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

return “Insufficient funds-®

self.balance = self.balance - amount

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

return “Insufficient funds-®

self.balance = self.balance - amount
return self.balance

Methods @

Methods are defined in the suite of a class statement

class Account(object):

def _init_ (self, account holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
1T amount > self.balance:

return “Insufficient funds-®

self.balance = self.balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

Invoking Methods

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object):

def deposit(self, amount):
self_balance = self.balance + amount
return self.balance

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object): (Called with two arguments)

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object): (Called with two arguments)

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

Dot notation automatically supplies the first argument to
a method.

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object): (Called with two arguments)

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

Dot notation automatically supplies the first argument to
a method.

>>> tom_account = Account('Tom")
>>> tom_account.deposit(100)
100

Invoking Methods @

All invoked methods have access to the object via the sel T
parameter, and so they can all access and manipulate the
object's state.

class Account(object): (Called with two arguments)

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

Dot notation automatically supplies the first argument to
a method.

>>> tom_account = Account('Tom")
>>> tom_account.deposit(100)
100)

Llnvoked with one argument)

Dot Expressions

Dot Expressions

Objects receive messages via dot notation

Dot Expressions @

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

Dot Expressions @

Objects receive messages via dot notation
Dot notation accesses attributes of the instance or its class

<expression> . <name>

Dot Expressions @

Objects receive messages via dot notation
Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

Dot Expressions @

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

tom _account.deposit(10)

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

*

itom_account.deposit(10)
...................... e et

(Dot expression)

Dot Expressions

Objects receive messages via dot notation
Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

--

4

tom account. dep051t(1@)

..................... it et
: . < Call expression)
(Dot expressmn)

*
--

Accessing Attributes

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a hame in the same way

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a hame in the same way

Looking up an attribute name in an object may return:

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a hame in the same way
Looking up an attribute name in an object may return:

® One of its instance attributes, or

Accessing Attributes @

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom _account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a hame in the same way
Looking up an attribute name in an object may return:
® One of its instance attributes, or

® (One of the attributes of its class

Methods and Functions

Methods and Functions

Python distinguishes between:

Methods and Functions

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom _account.deposit)

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)
1011

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)
1011
>>> tom_account.deposit(1000)

Methods and Functions @

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)
1011

>>> tom_account.deposit(1000)

2011

Methods and Currying

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner
return outer

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner

>>> add2 = curry(add)(2) return outer

>>> add2(3)
5

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method

from a function
def curry(f):
def outer(Xx):
def 1nner(**args):
return (X, *args)

return inner
>>> add2 = curry(add)(2) return outer
>>> add2(3)
5

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method

from a function
def curry(f):
def outer(x):
def 1nner(*args):
return (X, *args)
return 1nner

>>> add2 = curry(add)(2) return outer
>>> add2(3)

5

>>> tom _deposit = curry(Account.deposit)(tom account)
>>> tom _deposit(1000)
3011

