
CS61A Lecture 17

Amir Kamil
UC Berkeley

March 1, 2013

 HW6 due next Thursday

 Trends project due on Tuesday

 Partners are required; find one in lab or on Piazza
Will not work in IDLE
 New bug submission policy; see Piazza

Announcements

Names typically don’t matter for correctness,
but they matter tremendously for legibility

Use names for repeated compound expressions

Use names for meaningful parts of compound expressions

Practical Guidance: Choosing Names

boolean turn_is_over d dice play_helper take_turn

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

h = sqrt(square(a) + square(b))
if h > 1:
 x = x + h

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

disc_term = sqrt(square(b) - 4 * a * c)
x = (-b + disc_term) / (2 * a)

Sometimes, removing repetition requires restructuring the code

Practical Guidance: DRY

def find_quadratic_root(a, b, c, plus=True):
 """Applies the quadratic formula to the polynomial
 ax^2 + bx + c."""
 if plus:
 return (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)
 else:
 return (-b - sqrt(square(b) - 4 * a * c)) / (2 * a)

def find_quadratic_root(a, b, c, plus=True):
 """Applies the quadratic formula to the polynomial
 ax^2 + bx + c."""
 disc_term = sqrt(square(b) - 4 * a * c)
 if not plus:
 disc_term *= -1
 return (-b + disc_term) / (2 * a)

Write the test of a function before you write a
function

A test will clarify the (one) job of the function
Your tests can help identify tricky edge cases

Develop incrementally and test each piece before
moving on

You can’t depend upon code that hasn’t been tested
Run your old tests again after you make new changes

Test-Driven Development

Contest rules:
 All entries run against every other entry
 An entry wins a match if its true win rate is > 0.5
 All strategies must be deterministic, pure functions and

must not use pre-computed data
 Extra credit for entries with the most wins or the highest

cumulative win rate
 Total of 54 valid submissions

We used itertools.combinations to determine
the set of matches

Hog Contest

Congratulations to the team of Colin Lockard and Sherry Xu, who
achieved a perfect 53-0 record and the highest win rate (28.77)!

Second-most wins (51-2): Eric Holt and Anna Carey

Second-highest win rate (28.70): Don Mai and Jeechee Chen

Third-highest in both (50-3, 28.67): Sean Scofield and Frank Lu

Complete rankings will be posted on the website

Top Finishers

Computing Win Rates Exactly

A state in the game:
 (who rolls next?, player score, opponent score)

(me,0,0): 5
(me,0,70): 9
...
(me,96,99): 0
...
(me,99,99): 10

A strategy is a table Each state has a chance to win

1

...

(you,100+,99)

...
(you,98,99) 0

(you,88,99) 0
(you,90,99) 0

(me,87,99)
...

...
1/36 * 1 + 35/36 * 0
When rolling 2 dice:

0 (me,99,100+)

Requires access to both strategies, which must be deterministic

Optimal strategy given an opponent:
 At each state, compute probability of winning for each

allowed number of dice
 Choose the number of dice that maximizes the probability

The perfect strategy: use iterative improvement!

 Initial guess: always roll 5
 Update to: optimal opponent of current strategy
 Done when: 0.5 win rate against optimal opponent

Takes only 16 steps to converge!

Can also compute perfect strategy directly using table

Achieving the Perfect Strategy

A Function with Evolving Behavior

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdraw

Second withdrawal
of the same amount

Return value:
remaining balance

Different
return value!

Where's this
balance stored?

Within the
function!

Persistent Local State

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

Example: http://goo.gl/5LZ6F

http://goo.gl/5LZ6F

Reminder: Local Assignment

Execution rule for assignment statements:
1. Evaluate all expressions right of =, from left to right.
2. Bind the names on the left the resulting values in the first

frame of the current environment.

Assignment binds name(s) to
value(s) in the first frame of the

current environment

Example: http://goo.gl/xkYgN

http://goo.gl/xkYgN

Non-Local Assignment

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name
"balance" nonlocal

Re-bind balance
where it was

bound previously

The Effect of Nonlocal Statements

http://www.python.org/dev/peps/pep-3104/

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing
bindings in an enclosing scope. Names listed in a nonlocal statement
must not collide with pre-existing bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future assignments to that name change its pre-existing binding
in the first non-local frame of the current environment in which that
name is bound.

nonlocal <name>, <name 2>, ...

Python Docs: an
"enclosing scope"

http://www.python.org/dev/peps/pep-3104/
http://docs.python.org/release/3.1.3/reference/simple_stmts.html
http://docs.python.org/release/3.1.3/reference/simple_stmts.html
http://docs.python.org/release/3.1.3/reference/simple_stmts.html

Effects of Assignment Statements

x = 2

Status Effect
• No nonlocal statement
• "x" is not bound locally

Create a new binding from name "x" to object 2
in the first frame of the current environment.

• No nonlocal statement
• "x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

• nonlocal x
• "x" is bound in a

non-local frame
• "x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

• nonlocal x
• "x" is not bound in a non-

local frame

SyntaxError: no binding for nonlocal 'x' found

• nonlocal x
• "x" is bound in a non-local

frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

Python Particulars

Python pre-computes which frame contains each name before
executing the body of a function.

Therefore, within the body of a function, all instances of a name
must refer to the same frame.

Local assignment

Mutable Values and Persistent State

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value can
change

Example: http://goo.gl/cEpmz

http://goo.gl/cEpmz

Creating Two Withdraw Functions

Example: http://goo.gl/glTyB

http://goo.gl/glTyB

Multiple References to a Withdraw Function

Example: http://goo.gl/X2qG9

http://goo.gl/X2qG9

The Benefits of Non-Local Assignment

 Ability to maintain some state that is local to a function, but
evolves over successive calls to that function.

 The binding for balance in the first non-local frame of the
environment associated with an instance of withdraw is
inaccessible to the rest of the program.

 An abstraction of a bank account that manages its own
internal state.

Weasley
Account

$10

Potter
Account

$1,000,000

Referential Transparency

Expressions are referentially transparent if substituting an
expression with its value does not change the meaning of a
program.

mul(add(2, mul(4, 6)), 3)

mul(add(2, 24), 3)

mul(26 , 3)

Mutation is a side effect (like printing)

Side effects violate the condition of referential transparency
because they do more than just return a value; they change the
state of the computer.

	CS61A Lecture 17
	Announcements
	Practical Guidance: Choosing Names
	Practical Guidance: DRY
	Test-Driven Development
	Hog Contest
	Top Finishers
	Computing Win Rates Exactly
	Achieving the Perfect Strategy
	A Function with Evolving Behavior
	Persistent Local State
	Reminder: Local Assignment
	Non-Local Assignment
	The Effect of Nonlocal Statements
	Effects of Assignment Statements
	Python Particulars
	Mutable Values and Persistent State
	Creating Two Withdraw Functions
	Multiple References to a Withdraw Function
	The Benefits of Non-Local Assignment
	Referential Transparency

