CS61A Lecture 13

Amir Kamil
UC Berkeley
February 20, 2013

Announcements @

0O HW4 due today at 11:59pm

O Hog contest deadline on Friday
Completely optional, opportunity for extra credit
See website for details

Converting Recursion to Iteration @

Converting Iteration to Recursion @

Can be tricky! Iteration is a special case of recursion
Idea: Figure out what state must be maintained by the function

def summat , term):

...... -4 Initial value
et o

return {summation(n - 1, term):+{term(n):
What's summed so far? How to get each
incremental piece

iter(n, term):

Termination
condition

, n = total +
return total

More formulaic: Iteration is a special case of recursion
Idea: The state of iteration can be passed as parameters

def fib_iter(n):
if n==0:

fib_n, fib_n_1 = fib_n + fib_n_1, fib_n
k=k+1
return fib_n

def fib_rec(n,

PF D o= O e————
return O Parametersina
if k >=n: recursive function

return fib_n
return fib_rec(n, fib_n + fib_n_1, fib_n, k + 1)

Mutual Recursion @

Currying @

Mutual recursion is when the recursive process is split
across multiple functions

Decorating a recursive function generally results in

mutual recursion @tracel
def factorial(n):
if n==0:

return 1
return n * factorial(n-1)

Example: http://goo.gl/aLzzv

We have used higher-order functions to produce a function to
add a constant to its argument

What if we wanted to do the same for multiplication?

def make_adder(n):

def make_multipli
def multip
return

return adde return mul
{>>> make_adder(2)(3)! {>>> make_multiplier(2)(3):
i5 i6
i>>> add(2, 3) i>>> mul(2, 3)
‘5 ‘6

Same relationship
between functions

How can we do this in general without repeating ourselves?

Currying @

First, identify common structure.
Then define a function that generalizes the procedure.

def curry2(f):

def make_adder(n): def outer(n):
def adder(k): def inner(k):
return add(n, k) return f(n, k)
return adder return inner

return outer
>>> make_adder(2) (3)

5 >>> curry2(mul) (2)(3)
>>> add(2, 3) 6
5 >>> mul(2, 3)

6

This process of converting a multi-argument function to
consecutive single-argument functions is called currying.

Functional Abstractions @
def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

* square takes one argument. Yes
* square has the intrinsic name square. No
* square computes the square of a number. Yes

* square computes the square by calling mul. No

def square(x): def square(x):
return pow(x, 2) return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically

What is Data? @

Data: the things that programs fiddle with
Primitive values are the simplest type of data
Integers: 2, 3, 2013, -837592010
Floating point (decimal) values: -4.5, 98.6
Booleans: True, False

How do we represent more IARESERIOUS CAT
complex data? : J

We need data g

abstractions!
CS61A Lecture 11

Ammir Kamil

UC Berkeley
February 20, 2013

Data Abstraction

K

Compound data combine smaller pieces of data
together
A date: a year, month, and day

siawuwesdoud
1\%

A geographic position: latitude and logitude

An abstract data type lets us manipulate compound
data as a unit

Rational Numbers @

numerator
denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

® inumer (X); returns the numerator of x

idenom(x)j returns the denominator of x

Isolate two parts of any program that uses data 3
How data are represented (as parts) (5 S
How data are manipulated (as units) g =
[}
Data abstraction: A methodology by which functions ¢
enforce an abstraction barrier between representation
and use
Rational Number Arithmetic !éf
Example: General Form:
*
N . AL A Xy
2 5 10 dx dy dx*dy
3 3 21 nx ny nx*dy + ny*dx
= . = - = - L. 2L - =T '
2 5 10 dx dy dx*dy

Rational Number Arithmetic Code @

def mul_rational(x, y):
return

Selectors

nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

def add_rational(x, y):

def eq_rational(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

e rational(n, d) returns a rational number x

W_ISh_fUI ¢ numer(x) returns the numerator of x
thinking

¢ denom(x) returns the denominator of x

Tuples @

>>>
>>>
(1,

>>>
>>>

>>>

>>>
>>>

>>>
>>>

>>>

pair = (1, 2) Atuple literal:

g?l" Comma-separated expression
X, y = pair "Unpacking" a tuple

X

y

pair[e] Element selection

pair[1]

from operator import getitem
getitem(pair, 0)

getitem(pair, 1)
More tuples next lecture

Representing Rational Numbers @

def rational(n, d):
""" Construct a rational number x that represents

n/d.
Construct a tuple

from operator import getitem

def numer(x):
""" Return the numerator of rational number Xx.
return getitem(x, 0)

def denom(x):

Return the denominator of rational number

,-< Select from a tuple)

