
CS61A Lecture 11

Amir Kamil
UC Berkeley

February 15, 2013

 HW4 due Wednesday at 11:59pm

 Hog contest deadline next week
 Completely optional, opportunity for extra credit
 See website for details

Announcements

The Fibonacci sequence is defined as

Fibonacci Sequence

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 return fib(n - 1) + fib(n - 2)

Two recursive calls!

Example: http://goo.gl/DZbRG

http://goo.gl/DZbRG

Executing the body of a function may entail more than
one recursive call to that function
This is called tree recursion

Tree recursion

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

We can use a higher-order function to see the order in
which calls are made and complete

Tracing the Order of Calls

def trace1(fn):
 """Return a function equivalent to fn that
 also prints trace output."""
 def traced(x):
 print('Calling', fn, '(', x, ')')
 res = fn(x)
 print('Got', res, 'from', fn, '(', x, ')')
 return res
 return traced

Rebind the name fib to a traced version of fib
fib = trace1(fib)

Function Decorators

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

Is factorial implemented correctly?

1. Verify the base case.

2. Treat factorial(n-1) as
a functional abstraction.

3. Assume that factorial(n-1)
is correct.

4. Verify that factorial(n) is
correct, assuming that factorial(n-1) is correct

The Recursive Leap of Faith

Indiana Jones and
The Last Crusade

© Lucasfilm, Ltd.

def factorial(n):
 if n == 0:
 return 1
 return factorial(n-1)

Simpler problem

Oops!

Pig Latinization:
1. Move all beginning consonants to the end of the word
2. Add “ay” to the end of the word

Simplifying a Problem

def pig_latin(w):
 if starts_with_a_vowel(w):
 return w + 'ay'
 return pig_latin(rest(w) + first(w))

2 consonants
to be moved

1 consonant
to be moved Base case

smart  marts  artsm  artsmay

smart  artsmay

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

How many ways are there to change a dollar?

How many ways to change $0.11?

10 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1

5 5 1

Use a
dime

No dimes
Use a nickel No nickles

Ways to make 6 cents using no dimes

Ways to
make 1

cent

Counting Change Recursively

How many ways are there to change a dollar?

10 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1

5 5 1

Use a
dime

No dimes
Use a nickel No nickles

Ways to make 6 cents using no dimes

Ways to
make 1

cent

The number of ways to change an amount a using n kinds of
coins is:
1. The number of ways to change a-d using all kinds, where d

is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

Counting Change Recursively

How many ways are there to change a dollar?

def count_change(a, d):
 if a == 0:
 return 1
 if a < 0 or d == 0:
 return 0
 return (count_change(a-d, d) +
 count_change(a, next_coin(d)))

One way to make no amount

Can’t make negative amount,
or any amount with no coins

The number of ways to change an amount a using n kinds of
coins is:
1. The number of ways to change a-d using all kinds, where d

is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

Functional abstraction to get next coin

	CS61A Lecture 11
	Announcements
	Fibonacci Sequence
	Tree recursion
	Tracing the Order of Calls
	Function Decorators
	The Recursive Leap of Faith
	Simplifying a Problem
	Counting Change
	Counting Change Recursively
	Counting Change Recursively

