CS61A Lecture 11

Amir Kamil
UC Berkeley
February 15, 2013

Announcements

O HW4 due Wednesday at 11:59pm

O Hog contest deadline next week

Completely optional, opportunity for extra credit
See website for details

Fibonacci Sequence Q!

The Fibonacci sequence is defined as
0, n
fib(n) = < 1, n
fib(n — 1) +fib(n — 2), n>1

|
e

def fib(n):
it n ==
return O
elif n ==
return 1

--

[Two recursive caIIs!j

03

QQQQQ
--

Example: http://goo.gl/DZbRG

http://goo.gl/DZbRG

Tree recursion Q!

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

- (o]
o .
*
*
*
R 0
.
o * “‘ *
04 ¢ *)
- (3 K
o - .* K
. e »* K
* . * K
* * * K
R N . . L] .
* » o v K
R * * I *, I E
0
enmnEna,, * o * * ‘-
", LN * - S
]
te, R o e ° .
. * * *, .
. .
., »
. »
. -

oo" f b 3 .o -: M 1 “‘ “‘
P ib(3) | fib() flb(O)'-.__:a.g

-, fib(1) t£fib(1) fib(0) |,

‘e
.
‘e
*
.

.
.........
3

3

" fib(2) &
K /

*
%
‘e

ffib(l) fib(Of::1 f 1 0
e e

*

Tracing the Order of Calls Q!

We can use a higher-order function to see the order in
which calls are made and complete

def tracel(fn):

""" Return a function equivalent to fn that
also prints trace output.”""
def traced(Xx):
print("Calling”, fn, “(°, X, ")")
res = Th(x)
print("Got", res, “from", fn, “(", x, "))
return res
return traced

Rebind the name fib to a traced version of fib
fib = tracel(fib)

Function Decorators Qf

Function [‘
decorator y(@tracel: ' (Decorated
def triple(x): 2 function
) return 3 * x
is identical to
Why not just deftrlple(x)

Etriple = tracel(trlple)

e
...

The Recursive Leap of Faith _ng

def factorial(n):
if n == 0:
return 1

...
. Yo

--

|s factorial implemented correctly?

R Ty

1. Verify the base case.

2. Treat Factorial(n-1) as
a functional abstraction.

3. Assume that factorial(n-1)

Is correct. Indiana Jones and
The Last Crusade

4. Verify that Factorial (n) is Rs'mpler problem) ™I

...
. Yo

--

Simplifying a Problem Q!

Pig Latinization:

Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with a vowel(Ww):
return w + “ay-”
return pig latin(rest(w) + first(w))

smart - marts - artsm - artsmay
/\ /\ /\

2 consonants || 1 consonant Base case
to be moved) | to be moved

Counting Change Qg

S1=50.50+ S0.25 + $0.10 + S0.10 + $0.05

S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 = 2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Ways to
Usea | make 1 No dimes

dime cent } Use a nickel No nickles

.
.
=
=
=
=
=

{Ways to make 6 cents using no dimes)

Counting Change Recursively Qg

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

Ways to
Usea | make 1 No dimes
dime ' cent } Use a nickel No nickles
00000000000
{Ways to make 6 cents using no dimes)

Counting Change Recursively Q!

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of

coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

def count change(a d):

If a == {One way to make no amount)
L '.f..e..!.l.l..m....l_..

ifa<00rd :‘{Can t make negatlve amount)
: return O or any amount with no coins

--

.5

	CS61A Lecture 11
	Announcements
	Fibonacci Sequence
	Tree recursion
	Tracing the Order of Calls
	Function Decorators
	The Recursive Leap of Faith
	Simplifying a Problem
	Counting Change
	Counting Change Recursively
	Counting Change Recursively

