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 HW4 due Wednesday at 11:59pm 
 
 
 

 Hog contest deadline next week 
 Completely optional, opportunity for extra credit 
 See website for details 

Announcements 



The Fibonacci sequence is defined as 
 

 
 

Fibonacci Sequence 

def fib(n): 
    if n == 0: 
        return 0 
    elif n == 1: 
        return 1 
    return fib(n - 1) + fib(n - 2) 

Two recursive calls! 

Example: http://goo.gl/DZbRG 

http://goo.gl/DZbRG


Executing the body of a function may entail more than 
one recursive call to that function 
This is  called tree recursion 

Tree recursion 

fib(5) 

fib(4) 

fib(3) 

fib(1) 

1 

fib(2) 

fib(0) fib(1) 

0 1 

fib(2) 

fib(0) fib(1) 

0 1 

fib(3) 

fib(1) 

1 

fib(2) 

fib(0) fib(1) 

0 1 



We can use a higher-order function to see the order in 
which calls are made and complete 

Tracing the Order of Calls 

def trace1(fn): 
    """Return a function equivalent to fn that 
    also prints trace output.""" 
    def traced(x): 
        print('Calling', fn, '(', x, ')') 
        res = fn(x) 
        print('Got', res, 'from', fn, '(', x, ')') 
        return res 
    return traced 
 
# Rebind the name fib to a traced version of fib 
fib = trace1(fib) 



Function Decorators 

@trace1 
def triple(x): 
    return 3 * x 

is identical to  

def triple(x): 
    return 3 * x 
triple = trace1(triple) 

Decorated 
function 

Why not just 
use this? 

Function 
decorator 



Is factorial implemented correctly? 

1. Verify the base case. 

2. Treat factorial(n-1) as 
a functional abstraction. 

3. Assume that factorial(n-1) 
is correct. 

4. Verify that factorial(n) is 
correct, assuming that factorial(n-1) is correct 

The Recursive Leap of Faith 

Indiana Jones and 
The Last Crusade 

© Lucasfilm, Ltd. 

def factorial(n): 
    if n == 0: 
        return 1 
    return factorial(n-1) 

Simpler problem 

Oops! 



Pig Latinization: 
1. Move all beginning consonants to the end of the word 
2. Add “ay” to the end of the word 

Simplifying a Problem 

def pig_latin(w): 
    if starts_with_a_vowel(w): 
        return w + 'ay' 
    return pig_latin(rest(w) + first(w)) 

2 consonants 
to be moved 

1 consonant 
to be moved Base case 

smart      marts      artsm  artsmay 

smart  artsmay 



Counting Change 

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05 

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel 

$1 = 2 quarters, 2 dimes, 30 pennies 

$1 = 100 pennies 

How many ways are there to change a dollar? 

How many ways to change $0.11? 

10 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 

5 5 1 

Use a  
dime 

No dimes 
Use a nickel No  nickles 

Ways to make 6 cents using no dimes 

Ways to 
make 1 

cent 



Counting Change Recursively 

How many ways are there to change a dollar? 

10 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 

5 5 1 

Use a  
dime 

No dimes 
Use a nickel No  nickles 

Ways to make 6 cents using no dimes 

Ways to 
make 1 

cent 

The number of ways to change an amount a using n kinds of 
coins is: 
1. The number of ways to change a-d using all kinds, where d 

is the amount of the first kind of coin 
2. The number of ways to change a using all but the first kind 



Counting Change Recursively 

How many ways are there to change a dollar? 

def count_change(a, d): 
    if a == 0: 
        return 1 
    if a < 0 or d == 0: 
        return 0 
    return (count_change(a-d, d) +  
            count_change(a, next_coin(d))) 

One way to make no amount 

Can’t make negative amount, 
or any amount with no coins 

The number of ways to change an amount a using n kinds of 
coins is: 
1. The number of ways to change a-d using all kinds, where d 

is the amount of the first kind of coin 
2. The number of ways to change a using all but the first kind 

Functional abstraction to get next coin 
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