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Announcements

HW4 due Wednesday at 11:59pm

Hog contest deadline next week

Completely optional, opportunity for extra credit

See website for details



Fibonacci Sequence

The Fibonacci sequence is defined as

0, n =0
fib(n) =< 1, n =1
fib(n — 1) +fib(n — 2), n >1

Example: http://goo.gl/DZbRG
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Fibonacci Sequence

The Fibonacci sequence is defined as

0, n
fib(n) = < 1,
fib(n — 1) +fib(n —2), n >1

3
|

def Fib(n):

it n ==
) return O G-WO recursive caIIs!j
elif n == 1:
return 1

--------------------------------------------------------------------
0

0 0

*e *e
--------------------------------------------------------------------

Example: http://goo.gl/DZbRG
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Tracing the Order of Calls Qf

We can use a higher-order function to see the order in
which calls are made and complete

def tracel(fn):

""" Return a function equivalent to fn that
also prints trace output.'""
def traced(x):
print("Calling®, fn, (", X, "))
res = Th(x)
print("Got", res, “from®™, fn, (", X, "))
return res
return traced

Rebind the name fiIb to a traced version of fib
b

"
fib = tracel(fib)
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def triple(X):
return 3 * x
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: unction
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Function | .
decorator @tracei Decorated
def triple(®): function
....return 3 * x_
is identical to
Why not just deftrlple(x) .................................
use this? > return 3 * x 5

trlple = tracel(trlple)

o
-----------------------------------------------------------------------------------
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def factorial(n):

|s factorial implemented correctly?
1.

2.

iIT n == O:

---------------------------------------------
. oS

*a R
---------------------------------------------

Verify the base case.

Treat Factoriral (n-1) as
a functional abstraction.

Assume that factorial(n-1)

Is correct. Indiana Jones and
The Last Crusade

Verify that Factorial (n) is Q'mpler problem J "Ziii

------------------------------------------------

o id
-----------------------------------------------
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Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))
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Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a NO dimeS

dime Use a nickel No nickles




Counting Change ‘G_z,f

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a No dimes
dime Use a nickel No nickles
©0 000 00000000000




Counting Change ‘G_z,f

S1=50.50+$0.25 + $0.10 + $0.10 + $0.05

S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Ways to
Usea| make 1l No dimes

dime cent Use a nickel No nickles
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Counting Change _G_Lf

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Ways to
make 1
cent

No dimes

No nickles
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Counting Change Recursively _G_Lf

How many ways are there to change a dollar?

No dimes

No nickles
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Counting Change Recursively _G_Lf

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

No dimes

No nickles

.
-
=




Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of

coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

No dimes

No nickles
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Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

No dimes

No nickles

.
-
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Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind



Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

def count _change(a, d):
iIf a == 0O:
return 1
iITa<0ord==
return O
return (count change(a-d, d) +
count _change(a, next coin(d)))



Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

def Count Change(a d):

{One way to make no amount)

. FQFHEDNEN
iITa<0ord==
return O
return (count change(a-d, d) +

count_change(a, next coin(d)))




Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

def Count Change(a d):

{One way to make no amount)
L I eturnl
P e ._., Can't make negative amount,
: or any amount with no coins

return (count_ Change(a d, d) +
count _change(a, next coin(d)))

--------------------------------------------------------



Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind
def count Change(a d):

{One way to make no amount)
return 1:

i f a<00rd .................. _{Ca n t ma ke negatlve amou nt )

or any amount with no coins

--------------------------------------------------------

-------------------------------------
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