CS61A Lecture 11

Amir Kamil
UC Berkeley
February 15, 2013

Announcements

HW4 due Wednesday at 11:59pm

Hog contest deadline next week

Completely optional, opportunity for extra credit

See website for details

Fibonacci Sequence

The Fibonacci sequence is defined as

0, n =0
fib(n) =< 1, n =1
fib(n — 1) +fib(n — 2), n >1

Example: http://goo.gl/DZbRG

Fibonacci Sequence

The Fibonacci sequence is defined as

0, n =~0
fib(n) = < 1, n=1
fib(n — 1) +fib(n — 2), n >1
def fib(n):
it n ==
return O
elif n ==
return 1

return fib(n - 1) + fib(n - 2)

Example: http://goo.gl/DZbRG

Fibonacci Sequence

The Fibonacci sequence is defined as
0, n
fib(n) = < 1, n
fib(n — 1) +fib(n — 2), n >1

def fib(n):
1T n ==
return O
elift n ==
return 1

--
0

0 0

*e *e
--

Example: http://goo.gl/DZbRG

Fibonacci Sequence

The Fibonacci sequence is defined as

0, n
fib(n) = < 1,
fib(n — 1) +fib(n —2), n >1

3
|

def Fib(n):

it n ==
) return O G-WO recursive caIIs!j
elif n == 1:
return 1

--
0

0 0

*e *e
--

Example: http://goo.gl/DZbRG

Tree recursion

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

fib(5)

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

fib(5)

/

fib(4)

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

fib(5)

/\

fib(4) fib(3)

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

fib(5) \
fib(4) fib(3)
fib(3) fib(2)
/ AN / N
fib(2) fib(1) fib(1) fib(0)
SN | |
fib(1) fib(0) 1 1 0

1 0

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

fib(S)\
fib(4) PICEN
/ \ fbf2) b
PN TRRI gy fib(o) |1
fib(2) fib(l) fib(1) fib(0) |1 (|)
7 N | | |
fib(1) fib(0) 1 1 0

1 0

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

.......... "
“““““““ fib(5) ..
o flb(4) T / flb(3) ‘
O \
/ \ ~~~~~~~ fib(2) < f|b(1)
“".' . ’ O o / \ " :
o fib(3) . % fib(2) ", ﬂb(l) fib(0]: | :
: / \ ”’. ...”’ / \ K g | | L et]
“fib(2) & f|b() fib(1) fib(0) & % ! Lo
g / \ i | e '
f|b(1) fib(Of:%1 ¢ %1 0 .

*

- .
. .’

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

.......... "
“““““““ fib(5) ..
o flb(4) T / flb(3) ‘
O \
/ \ ~~~~~~~ fib(2) < f|b(1)
“".' . ’ O o / \ " :
o fib(3) . % fib(2) ", ﬂb(l) fib(0]: | :
: / \ ”’. ...”’ / \ K g | | L et]
“fib(2) & f|b() fib(1) fib(0) & % ! Lo
g / \ i | e '
f|b(1) fib(Of:%1 ¢ %1 0 .

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

.......... "
“““““““ fib(5) ..
o flb(4) T / flb(3) ‘
O \
/ \ ~~~~~~~ fib(2) < f|b(1)
“".' . ’ O o / \ " :
o fib(3) . % fib(2) ", ﬂb(l) fib(0]: | :
: / \ ”’. ...”’ / \ K g | | L et]
“fib(2) & f|b() fib(1) fib(0) & % ! Lo
g / \ i | e '
f|b(1) fib(Of:%1 ¢ %1 0 .

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

o .
R
* * * *
o* % o* LR
- - . *
.
R4 . .* *
o . o -
0 - . .
* 3 +* .
o 3 * . -y, . .
. ‘e o* I " % .
* . * * . -
“-llll...... 0.. ‘0 * Y -
N *a, s S * .
) L] * * . -
. *
. g v [
. LY L]
Ll
Ll
L]
Ll

! " / \ : |
AT i) o

~ fib(2) € fib(1) i:fib(1) fib(0) i :

o / *.“" . . -_- -:

ffib(1) fib(0f%1 1 0

00000

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

o .
R
* * * *
o* % o* LR
- - . *
.
R4 . .* *
o . o -
0 - . .
* 3 +* .
o 3 * . -y, . .
. ‘e o* I " % .
* . * * . -
“-llll...... 0.. ‘0 * Y -
N *a, s S * .
) L] * * . -
. *
. g v [
. LY L]
Ll
Ll
L]
Ll

! " / \ : |
AT i) o

~ fib(2) € fib(1) i:fib(1) fib(0) i :

o / *.“" . . -_- -:

ffib(l) fib(O)it1 %1 0

00000

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
* »
R4 3 - !
- . * -
03 . .
o . " y
* . i ‘
* R . y
* . - y

0’ * . . “nn, . ‘
* e o I By . I .
* " . y -
JrunEE ., ‘e R % . .
. e e - - u
G . R . :

L] .' . Y
- 'S - :
. :
Ll
»
L]
Ll

PN (I
- fib(2) @™ fib(1) i:fib(1) fib(0) & * ;
:l..‘ / *.”":““ :E -_-“ ‘ :

00000

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
* »
R4 3 - !
- . * -
03 . .
o . " y
* . i ‘
* R . y
* . - y

0’ * . . “nn, . ‘
* e o I By . I .
* " . y -
JrunEE ., ‘e R % . .
. e e - - u
G . R . :

L] .' . Y
- 'S - :
. :
Ll
»
L]
Ll

AN (LT U
- fib(2) @™ fib(1) ::fib(1) fib(0) i ;

:l..‘ / *.”":““ :E -_-“ ‘ -:

{ fib(1) fib(0): %1 7 * 1 0

*
IIIIIIIIIIIIIIIIIIIIIIIII

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
R
- -
o 0 o 3
R » o L3
- . *
R4 . .* *
o . o -
0 - . .
* . +* .

o 3 * . -y, . .
. ‘e o I " % I .
* . * * -
“-llll..... 0. ‘0 '0 - -
N Yu, * * . .
. 3 * \J =

L .' (3 *
» . v [
. .
L
Ll
L]
Ll

P AN AN A
~ fib(2) € fib(1) i:fib(1) fib(0) i ;
: fib(1) fib(0): %1 7 ™~ 1

* .

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
- 3
o 0 o 3
o (S o -
. Py *
R4 . .* *
o . o .
.
* - **
o . . . -n . \d
S N . KL .
. . o I . . I .
* . * * -
“-llll..... 0. ‘0 '0 - -
N Yu, * - . u
" Yo * * . =
. *
. . .
., -
Ll
Ll
L]
Ll

P AN AN (A
~ fib(2) € fib(1) i:fib(1) fib(0) i ;
: fib(1) fib(0): %1 7 ™~ 1

* .

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
R
-
o 0 o 3
R (S o L3
- . *
R4 . .* *
o . o -
.
* - **
o . . . -n . \d
S N . KLELN .
. . o I . ., I .
* . * * -
“-llll..... 0. ‘0 '0 - -
N Yu, * * . .
» 4, LN * * "
. *
. . .
. .
Ll
Ll
L]
Ll

P AN AN (A
~ fib(2) € fib(1) i:fib(1) fib(0) i ;
: fib(1) fib(0): %1 7 ™~ 1

* .

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
R
-
o 0 o 3
R (S o L3
- . *
R4 . .* *
o . o -
.
* - **
o . . . -n . \d
S N . KLELN .
. . o I . ., I .
* . * * -
“-llll..... 0. ‘0 '0 - -
N Yu, * * . .
» 4, LN * * "
. *
. . .
. .
Ll
Ll
L]
Ll

P AN AN (A
~ fib(2) € fib(1) i:fib(1) fib(0) i ;
: fib(1) fib(0): %1 7 ™~ 1

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
R
-
o 0 o 3
R (S o L3
- . *
R4 . .* *
o . o -
.
* - **
o . . . -n . \d
S N . KLELN .
. . o I . ., I .
* . * * -
“-llll..... 0. ‘0 '0 - -
N Yu, * * . .
» 4, LN * * "
. *
. . .
. .
Ll
Ll
L]
Ll

P AN AN (A
~ fib(2) € fib(1) i:fib(1) fib(0) i ;
: fib(1) fib(0): %1 7 ™~ 1

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
3
o 0 o 3
* * . *
* S R *
* . . *
- - * .
05 . .* .
* 3 +* .
o . o f' .., . .
* * * I - I .
0 3 ‘
RLLLLTYO% LR ** *. 0‘ '-
g "y O * . .
D a, . o4 - . -
N ., % * * . -
. 3 .
., -
Ll
Ll
L]
Ll

, : S N |
o P S T i) fibfol g

- fib(2) @™ fib(1) ::fib(1) fib(0) i ;
:l..‘ / *.”":““ :E -_-“ ‘ -:
ffib(1) fib(0):%1 F 1

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
3
o 0 o 3
* * . *
* S R *
* . . *
- - * .
05 . .* .
* 3 +* .
o . o f' .., . .
* * * I - I .
0 3 ‘
RLLLLTYO% LR ** *. 0‘ '-
g "y O * . .
D a, . o4 - . -
N ., % * * . -
. 3 .
., -
Ll
Ll
L]
Ll

. __ S N |
I N, b)) fib(0)

~ fib(2) @™ fib(1) i/fib(1) fib(0) %+ 5
:l..‘ / *.”":““ :E -_-“ ‘ _:
ffib(1) fib(O)is1 1

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
3
o 0 o 3
* * . *
* S R *
* . . *
- - * .
05 . .* .
* 3 +* .
o . o f' .., . .
* * * I - I .
0 3 ‘
RLLLLTYO% LR ** *. 0‘ '-
g "y O * . .
D a, . o4 - . -
N ., % * * . -
. 3 .
., -
Ll
Ll
L]
Ll

. __ S N |
I N, b)) fib(0)

~ fib(2) @™ fib(1) i/fib(1) fib(0) %+ 5
:l..‘ / *.”":““ :E -_-“ ‘ _:
ffib(1) fib(O)is1 1

®

Tree recursion @

Executing the body of a function may entail more than
one recursive call to that function

This is called tree recursion

*
*

o .
K
3
o 0 o 3
* * . *
* S R *
* . . *
- - * .
05 . .* .
* 3 +* .
o . o f' .., . .
* * * I - I .
0 3 ‘
RLLLLTYO% LR ** *. 0‘ '-
g "y O * . .
D a, . o4 - . -
N ., % * * . -
. 3 .
., -
Ll
Ll
L]
Ll

. __ S N |
I N, b)) fib(0)

~ fib(2) @™ fib(1) i/fib(1) fib(0) %+ 5
:l..‘ / *.”":““ :E -_-“ ‘ _:
ffib(1) fib(O)is1 1

®

Tracing the Order of Calls

Tracing the Order of Calls @

We can use a higher-order function to see the order in
which calls are made and complete

Tracing the Order of Calls Qf

We can use a higher-order function to see the order in
which calls are made and complete

def tracel(fn):

""" Return a function equivalent to fn that
also prints trace output.'""
def traced(x):
print("Calling®, fn, (", X, "))
res = Th(x)
print("Got", res, “from®™, fn, (", X, "))
return res
return traced

Tracing the Order of Calls Qf

We can use a higher-order function to see the order in
which calls are made and complete

def tracel(fn):

""" Return a function equivalent to fn that
also prints trace output.'""
def traced(x):
print("Calling®, fn, (", X, "))
res = Th(x)
print("Got", res, “from®™, fn, (", X, "))
return res
return traced

Rebind the name fiIb to a traced version of fib
b

"
fib = tracel(fib)

Function Decorators

Function Decorators

@tracel
def triple(X):
return 3 * X

Function Decorators

Function
decorator -'I@E_[Q,_Q?_l?

def triple(X):
return 3 * x

Function Decorators @

[Funchon .. .
decorator @tracei Decorated
def triple(X): J ¥ :
unction
: return 3 * x

0
*
--

Function Decorators @

[Funchon .. .
decorator @tracei Decorated
def triple(X): J ¥ :
: unction
- return 3 * x:

0
*
--

is identical to

Function Decorators @

[Funchon .. .
decorator @tracei Decorated
def triple(X): J ¥ :
: unction
: return 3 * x

0
*
--

is identical to

def triple(X):
return 3 * X
triple = tracel(triple)

Function Decorators @

Function | .
decorator @tracei Decorated
def triple(®): function
....return 3 * x_
is identical to
Why not just deftrlple(x)
use this? > return 3 * x 5

trlple = tracel(trlple)

o

The Recursive Leap of Faith

The Recursive Leap of Faith

def factorlal(n)
it n ==
return 1
return factorial(n-1)

The Recursive Leap of Faith

def factorlal(n)
it n ==
return 1
return factorial(n-1)

|s factorial implemented correctly?

The Recursive Leap of Faith

def factorial(n):
iIT n == O:
return 1
return factorial(n-1)

|s factorial implemented correctly?

1. Verify the base case.

The Recursive Leap of Faith

def factorial(n):
iIT n == O:
return 1
return factorial(n-1)

|s factorial implemented correctly?
1. Verify the base case.

2. Treat Ffactoriral(n-1) as
a functional abstraction.

The Recursive Leap of Faith

def factorial(n):
iIT n == O:
return 1
return factorial(n-1)

|s factorial implemented correctly?
1. Verify the base case.

2. Treat Ffactoriral(n-1) as
a functional abstraction.

3. Assume that Factorial (n-1)
IS correct.

The Recursive Leap of Faith @

def factorial(n):
iIT n == 0O:
return 1
return factorial(n-1)

|s factorial implemented correctly?
1. Verify the base case.

2. Treat Ffactoriral(n-1) as
a functional abstraction.

3. Assume that Factorial (n-1)

Is correct. Indiana Jones an

The Last Crusade
© Lucasfilm, Ltd.

The Recursive Leap of Faith @

def factorial(n):

|s factorial implemented correctly?
1.

2.

iIT n == 0O:
return 1
return factorial(n-1)

Verify the base case.

Treat Factoriral (n-1) as
a functional abstraction.

Assume that factorial(n-1)

Is correct. Indiana Jones and
The Last Crusade

Verify that Factorral (n) is © tucastim, e
correct, assuming that factorral (n-1) is correct

The Recursive Leap of Faith @

def factorial(n):

|s factorial implemented correctly?
1.

2.

iIT n == O:

. oS

*a R

Verify the base case.

Treat Factoriral (n-1) as
a functional abstraction.

Assume that factorral(n-1) : g
IS correct. Indiana Jones an

_ The Last Crusade
Verify that Factorral(n) is © bucasfim,

correct, assuming that factorral (n-1) is correct

The Recursive Leap of Faith @

def factorial(n):

|s factorial implemented correctly?
1.

2.

iIT n == O:

. oS

*a R

Verify the base case.

Treat Factoriral (n-1) as
a functional abstraction.

Assume that factorial(n-1)

Is correct. Indiana Jones and
The Last Crusade

Verify that Factorial (n) is Q'mpler problem J "Ziii

--

o id

Simplifying a Problem

Simplifying a Problem

Pig Latinization:

Simplifying a Problem @

Pig Latinization:

Move all beginning consonants to the end of the word

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts

Simplifying a Problem @

Pig Latinization:
Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts — artsm

Simplifying a Problem Qf

Pig Latinization:

Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts —-> artsm - artsmay

Simplifying a Problem Qf

Pig Latinization:

Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts —-> artsm - artsmay
/\

2 consonants
to be moved

Simplifying a Problem @

Pig Latinization:

Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts —-> artsm - artsmay
/\ /\

2 consonants || 1 consonant
to be moved)| to be moved

Simplifying a Problem @

Pig Latinization:

Move all beginning consonants to the end of the word
Add “ay” to the end of the word

smart - artsmay

def pig latin(w):
1T starts with _a vowel(w):
return w + "ay”
return pig_latin(rest(w) + Tirst(w))

smart - marts —-> artsm - artsmay
/\ /\ /\

2 consonants || 1 consonant Base case
to be moved)| to be moved

Counting Change

Counting Change

S1=50.50+$0.25 + $0.10 + $0.10 + $0.05

Counting Change

S1=50.50 + S0.25 + $S0.10 + S0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel

Counting Change

S1=50.50 + S0.25 + $S0.10 + S0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel

S1 =2 quarters, 2 dimes, 30 pennies

Counting Change

S1 =S50.50 + S0.25 + S0.10 + S0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies

S1 =100 pennies

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies

S1 =100 pennies

How many ways are there to change a dollar?

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a
dime

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a
dime

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a
dime

®©O

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a NO dimes
dime

®©O

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a No dimes

dime Use a nickel

®©O

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a No dimes

dime Use a nickel

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a No dimes

dime Use a nickel

Counting Change

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a NO dimeS

dime Use a nickel No nickles

Counting Change ‘G_z,f

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Use a No dimes
dime Use a nickel No nickles
©0 000 00000000000

Counting Change ‘G_z,f

S1=50.50+$0.25 + $0.10 + $0.10 + $0.05

S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Ways to
Usea| make 1l No dimes

dime cent Use a nickel No nickles

EmEmE,
[]
[
n
N
[
n
v

Counting Change _G_Lf

S1=50.50 + $0.25 + $0.10 + $0.10 + S0.05
S1 =1 half dollar, 1 quarter, 2 dimes, 1 nickel
S1 =2 quarters, 2 dimes, 30 pennies
S1 =100 pennies
How many ways are there to change a dollar?

How many ways to change $S0.117?

Ways to
make 1
cent

No dimes

No nickles

.
-
=

Counting Change Recursively _G_Lf

How many ways are there to change a dollar?

No dimes

No nickles

*
-
=

Counting Change Recursively _G_Lf

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

No dimes

No nickles

.
-
=

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of

coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

No dimes

No nickles

.
-
=

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

No dimes

No nickles

.
-
=

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

def count _change(a, d):
iIf a == 0O:
return 1
iITa<0ord==
return O
return (count change(a-d, d) +
count _change(a, next coin(d)))

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind

def Count Change(a d):

{One way to make no amount)

. FQFHEDNEN
iITa<0ord==
return O
return (count change(a-d, d) +

count_change(a, next coin(d)))

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin
2. The number of ways to change a using all but the first kind

def Count Change(a d):

{One way to make no amount)
L I eturnl
P e ._., Can't make negative amount,
: or any amount with no coins

return (count_ Change(a d, d) +
count _change(a, next coin(d)))

--

Counting Change Recursively @

How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds of
coins is:

1. The number of ways to change a-d using all kinds, where d
is the amount of the first kind of coin

2. The number of ways to change a using all but the first kind
def count Change(a d):

{One way to make no amount)
return 1:

i f a<00rd _{Ca n t ma ke negatlve amou nt)

or any amount with no coins

--

	11-RecursionExamples_1pps.pdf
	CS61A Lecture 11
	Announcements
	Fibonacci Sequence
	Tree recursion
	Tracing the Order of Calls
	Function Decorators
	The Recursive Leap of Faith
	Simplifying a Problem
	Counting Change
	Counting Change Recursively
	Counting Change Recursively

