
CS61A Lecture 7 

Amir Kamil 
UC Berkeley 

February 6, 2013 



 HW3 out, due Tuesday at 7pm 
 Midterm next Wednesday at 7pm 

 Keep an eye out for your assigned location 
 Old exams posted soon 
 Review sessions 

 Saturday 2-4pm in TBA 
 Extend office hours Sunday 11-3pm in TBA 
 HKN review session Sunday 3-6pm in 145 Dwinelle 

 Environment diagram handout on website 
 Code review system online 

 See Piazza post for details 

Announcements 



How to Draw an Environment Diagram 

When defining a function: 

Create a function value with signature  
<name>(<formal parameters>) 

For nested definitions, label the parent as the first frame of the current 
environment 

Bind <name> to the function value in the first frame of the current 
environment 

When calling a function: 

1. Add a local frame labeled with the <name> of the function 

2. If the function has a parent label, copy it to this frame 

3. Bind the <formal parameters> to the arguments in this frame 

4. Execute the body of the function in the environment that starts with this 
frame 



Environment for Function Composition 

2 

1 

3 

1 

2 

3 

Example: http://goo.gl/5zcug 

http://goo.gl/5zcug


Lambda Expressions 

>>> ten = 10 

>>> square = x * x 

>>> square = lambda x: x * x 

>>> square(4) 
16 

An expression: this one 
evaluates to a number 

Also an expression: 
evaluates to a function 

and body "return x * x" 
with formal parameter x 

A function 

Lambda expressions are rare in Python, but important in general 

Notice: no "return" 

Must be a single expression 



Evaluation of Lambda vs. Def 

Execution procedure for def statements: 
1. Create a function value with signature  

<name>(<formal parameters>) 
and the current frame as parent 

2. Bind <name> to that value in the current frame 

Evaluation procedure for lambda expressions: 
1. Create a function value with signature  

λ(<formal parameters>) 
and the current frame as parent 

2. Evaluate to that value 

lambda x: x * x 
def square(x): 
    return x * x VS 



Lambda vs. Def Statements 

square = lambda x: x * x 
def square(x): 
    return x * x VS 

Both create a function with the same arguments & behavior 

Both of those functions are associated with the environment in 
which they are defined 

Both bind that function to the name "square" 

Only the def statement gives the function an intrinsic name 

The Greek 
letter lambda 



Newton’s Method Background 

Finds approximations to zeroes of differentiable 
functions  

f(x) = x2 - 2 A “zero” 

Application: a method for (approximately) computing 
square roots, using only basic arithmetic. 

The positive zero of f(x) = x2 - a is  

x=1.414213562373095 



Newton’s Method 

Compute the value of f at the guess: f(x) 

Compute the derivative of f at the guess: f'(x) 

Update guess to be:  

Begin with a function f and  
an initial guess x 

 (x, f(x)) 

-f(x)/f'(x) 

-f(x) 

Visualization: http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif 

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif


Using Newton’s Method 

>>> f = lambda x: x*x - 2 
>>> find_zero(f) 
1.4142135623730951 

How to find the square root of 2? 

How to find the log base 2 of 1024? 
>>> g = lambda x: pow(2, x) - 1024 
>>> find_zero(g) 
10.0 g(x) = 2x - 1024 

f(x) = x2 - 2 



Special Case: Square Roots 

How to compute square_root(a) 

Idea: Iteratively refine a guess x about the square root of a 

What guess should start the computation? 

How do we know when we are finished? 

Implementation questions: 

Update: 

Babylonian Method 

x - f(x)/f'(x) 



Special Case: Cube Roots 

How to compute cube_root(a) 

Idea: Iteratively refine a guess x about the cube root of a 

What guess should start the computation? 

How do we know when we are finished? 

Implementation questions: 

Update: 

x - f(x)/f'(x) 



Iterative Improvement 

def iter_improve(update, done, guess=1, max_updates=1000): 
    """Iteratively improve guess with update until done 
    returns a true value. 
 
    >>> iter_improve(golden_update, golden_test) 
    1.618033988749895 
    """ 
    k = 0 
    while not done(guess) and k < max_updates: 
        guess = update(guess) 
        k = k + 1 
    return guess 

First, identify common structure. 
Then define a function that generalizes the procedure.  



Newton’s Method for nth Roots 

def nth_root_func_and_derivative(n, a): 
    def root_func(x): 
        return pow(x, n) - a 
    def derivative(x): 
        return n * pow(x, n-1) 
    return root_func, derivative 
 
def nth_root_newton(a, n): 
    """Return the nth root of a. 
 
    >>> nth_root_newton(8, 3) 
    2.0 
    """ 
    root_func, deriv = nth_root_func_and_derivative(n, a) 
    def update(x): 
        return x - root_func(x) / deriv(x) 
    def done(x): 
        return root_func(x) == 0 
    return iter_improve(update, done) 

x – f(x)/f’(x) 

Definition of a function zero 

Exact derivative 


	CS61A Lecture 7
	Announcements
	How to Draw an Environment Diagram
	Environment for Function Composition
	Lambda Expressions
	Evaluation of Lambda vs. Def
	Lambda vs. Def Statements
	Currying
	Currying
	Function Decorators
	Newton’s Method Background
	Newton’s Method
	Using Newton’s Method
	Special Case: Square Roots
	Special Case: Cube Roots
	Iterative Improvement
	Newton’s Method for nth Roots

