
CS61A Lecture 5

Amir Kamil
UC Berkeley

February 1, 2013

 Quiz today!
 Only worth two points, so don’t worry!

 Hog project
 Get started early!
 If you still don’t have a partner (and want one), find one

on Piazza
 Use existing post; don’t make a new one

Announcements

 Give each function exactly one job

 Don’t reapeat yourself (DRY).

 Don’t reapeat yourself (DRY).

 Define functions generally

The Art of the Function

Generalizing Patterns with Parameters

Shape:

Regular geometric shapes relate length and area.

Area:

Finding common structure allows for shared implementation

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

Function values can be passed as arguments

Functions as Arguments

Function of a single argument (not
called term)

A formal parameter that will be
bound to a function

The function bound to term gets
called here

The cube function is passed as an
argument value

0 + 13 + 23 + 33 + 43 + 55

Parameters can be bound to function values

Function Values as Parameters

Example: http://goo.gl/e4YBH

http://goo.gl/e4YBH

Locally defined functions can be returned
They have access to the frame in which they are defined

Functions as Return Values

def make_adder(n):
 """Return a function that adds n to its argument.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return add(n, k)
 return adder

A function that returns
a function

A local
def statement

Can refer to names in the
enclosing function

The name add_three is
bound to a function

Call Expressions as Operators

def make_adder(n):
 def adder(k):
 return add(n, k)
 return adder

make_adder(1)(2)

make_adder(1) (2)

Operator Operand 0

An expression that
evaluates to a
function value

An expression that
evaluates to any

value

Functions are first-class: they can be manipulated as
values in Python

Higher-order function: a function that takes a function
as an argument value or returns a function as a return
value

Higher order functions:

 Express general methods of computation
 Remove repetition from programs
 Separate concerns among functions

Higher-Order Functions

	CS61A Lecture 5
	Announcements
	The Art of the Function
	Generalizing Patterns with Parameters
	Generalizing Over Computational Processes
	Functions as Arguments
	Function Values as Parameters
	Functions as Return Values
	Call Expressions as Operators
	Higher-Order Functions

