
CS61A Lecture 4

Amir Kamil
UC Berkeley

January 30, 2013

 Reminder: hw1 due tonight

 In-class quiz on Friday
 Covers through Wednesday’s lecture
 Bring a writing implement

 Hog project out
 Get started early!
 Try it out online! See the announcement on the website

Announcements

3.7
6.0

7.5 8.4 8.9 8.9 8.7 8.5 8.0 7.5

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10Ex
pe

ct
ed

 S
co

re

Number of Dice Rolled (6-Sided Dice)

The Game of Hog

0% 17%

49% 48%
40%

33% 28% 23% 19% 16%
0%

20%

40%

60%

1 2 3 4 5 6 7 8 9 10Ch
an

ce
 o

f 1
0+

Number of Dice Rolled (6-Sided Dice)

 Every expression is evaluated in the context of an
environment

 So far, the current environment is either:
 The global frame alone, or
 A local frame, followed by the global frame

 Important properties of environments:
 An environment is a sequence of frames
 The earliest frame that contains a binding for a name

determines the value that the name evaluates to

 The scope of a name is the region of code that has
access to it

Environment Diagrams

The environment in which a function is applied
consists of:

 A new local frame each time the function is applied

 The environment in which the function was defined

 We refer to this as lexical scoping

 So far, this is just the global frame

 The current state of the environment is used, not the
state when the function definition was executed

Environment of Function Application

Formal Parameters

def square(x):
 return mul(x, x)

def square(y):
 return mul(y, y) vs

Formal parameters
have local scope

Example: http://goo.gl/boCk0

http://goo.gl/boCk0

Multiple Environments in a Diagram

1
2
2

1

1

Example: http://goo.gl/hrfnV

What happens when to the local frame when a
function returns?

 It sticks around until Python realizes it is no longer needed
We will soon see cases where it is needed after the call

http://goo.gl/hrfnV

Life Cycle of a User-Defined Function

Def statement:

Call expression:

square(x):
return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

Formal parameter

(return statement)

Function created

Name bound

operand: 2+2
argument: 4

Op's evaluated

Function called
with argument(s)

What happens?

operator: square
function: func square(x)

Signature

4

16

New frame!

Params bound

Body executed

Argument

Return value

Evaluates to
return value below

Operators

Multiple Return Values

Docstrings

Doctests

Default Arguments

Statements

Python Feature Demonstration

A statement is executed by the interpreter to perform
an action

Types of statements we have seen so far
 An assignment

radius = 10

 A function definition
def square(x):
 return x * x

 Returns, imports, assertions

Statements

Local Assignment

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right.

2. Bind the names on the left the resulting values in the first
frame of the current environment.

Example: http://goo.gl/1pyzL

http://goo.gl/1pyzL

A function definition is a compound statement

Compound Statements

 <header>:
 <statement>
 <statement>
 …
 <separating header>:
 <statement>
 <statement>
 ...
…

Compound statements:
Statement

Suite

Clause

The first header
determines a
statement’s type

The header of a
clause “controls” the
suite that follows

Compound Statements

 <header>:
 <statement>
 <statement>
 …
 <separating header>:
 <statement>
 <statement>
 ...
…

Compound statements:

Suite

Execution rule for a sequence of statements:
1. Execute the first

2. Unless directed otherwise, execute the rest

A suite is a sequence of
statements

To “execute” a suite means
to execute its sequence of
statements, in order

Conditional Statements

Execution rule for conditional statements:

def absolute_value(x):
 """Return the absolute value of x."""
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites

Each clause is considered in order.
1. Evaluate the header's expression.
2. If it is a true value,

execute the suite & skip the remaining clauses.

def absolute_value(x):
 """Return the absolute value of x."""
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

Boolean Contexts

Two boolean
contexts

False values in Python: False, 0, "", None

True values in Python: Anything else (True)

(more to come)

George Boole

Read Section 1.5.4!

Iteration

1. Evaluate the header’s expression.
2. If it is a true value,

execute the (whole) suite,
then return to step 1.

Execution rule for while statements:

1 2 3
1 3 6

Example: http://goo.gl/mk7Sc

http://goo.gl/mk7Sc

Functions can be defined inside other functions

What happens when a def is executed?
1. Create a function value with the given signature and body
2. Bind the given name to that value in the current frame

The name can then be used to call the function.

Locally Defined Functions

def sum_of_squares(n):
 """Sum of the squares of the integers 1 to n"""
 def square(x):
 return mul(x, x)
 total, k = 0, 1
 while k <= n:
 total, k = total + square(k), k + 1
 return total

The inner definition is executed each time the outer
function is called

Locally Defined Functions

Example: http://goo.gl/pnU8f

http://goo.gl/pnU8f

Locally defined functions can be returned
They have access to the frame in which they are defined

Functions as Return Values

def make_adder(n):
 """Return a function that adds n to its argument.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return add(n, k)
 return adder

A function that returns
a function

A local
def statement

Can refer to names in the
enclosing function

The name add_three is
bound to a function

Call Expressions as Operators

def make_adder(n):
 def adder(k):
 return add(n, k)
 return adder

make_adder(1)(2)

make_adder(1) (2)

Operator Operand 0

An expression that
evaluates to a
function value

An expression that
evaluates to any

value

	CS61A Lecture 4
	Announcements
	The Game of Hog
	Environment Diagrams
	Environment of Function Application
	Formal Parameters
	Multiple Environments in a Diagram
	Life Cycle of a User-Defined Function
	Python Feature Demonstration
	Statements
	Local Assignment
	Compound Statements
	Compound Statements
	Conditional Statements
	Boolean Contexts
	Iteration
	Locally Defined Functions
	Locally Defined Functions
	Functions as Return Values
	Call Expressions as Operators

