CS61A Lecture 3

Amir Kamil
UC Berkeley
January 28, 2013

Announcements @

O Reminder: hwO due tonight, hwl due Wed.

O In-class quiz on Friday
Covers through Wednesday’s lecture
Bring a writing implement

O Hog project out
Get started early!
More on hog next time

The Elements of Programming Q!

O Primitive Expressions and Statements
The simplest building blocks of a language

O Means of Combination
Compound elements built from simpler ones

O Means of Abstraction

Elements can be named and manipulated as units

Environment Diagrams @

Environment diagrams visualize the interpreter’s process.

Import statement Global frame

; } - Name
from math import pi

[Assignment statement J

Code (left): Frames (right):

Statements and A name is bound to a value
expressions

Next line is highlighted

In a frame, there is at most
one binding per name
Example: http://goo.gl/SK13i

User-Defined Functions @

Named values are a simple means of abstraction

Named computational processes are a more powerful means of
abstraction

[Function “signature” indicates how many parameters]

>>> def {%name>(<forma| parameters>)::.E
{:return <return expression>

[Function “body” defines a computational process]

Execution procedure for def statements:
1. Create a function value with signature
<name>(<formal parameters>)

2. Bind <name> to that value in the current frame

Calling User-Defined Functions @

Procedure for applying user-defined functions (version 1):
1. Addalocal frame
2. Bind formal parameters to arguments in that frame
3. Execute the body of the function in the new environment
from operator impert mul

Built-in function
def square(x):

return mul(x, x) Global frame

square(-2) .
Intrinsic name of mul
function called square
Local frame)i

Formal parameter
bound to argument

User-defined
function

Return value is
not a binding!
Example: http://200.g1/boCk0

Calling User-Defined Functions @

Procedure for applying user-defined functions (version 1):
1. Addalocal frame
2. Bind formal parameters to arguments in that frame
3. Execute the body of the function in the new environment

from operator import mul
def square(x):
return mul(x, x)

Looking Up Names @

Procedure for looking up a name from inside a function (v. 1):
1. Look it upinthe local frame
2. If notin local frame, look it up in the global frame
3. Ifin neither frame, generate error

from operator import mul
def square(x)=""""""""*
- return mul(x, x) K
square(-2) Trasnssanas

. Global frame func mul(...)

*rnee>mul func square(x)

square
“mul” is
not found . square
Tannunn » x -2

Example: http://goo.gl/boCk0

Global frame func mul(...)
square(-2)
mul func square(x)
square 3 :
Ve
A function’s signature has all S
the information to create a 2
Return
local frame valve |¢
Example: http://goo.gl/boCk0
General Lookup Procedure @

O Every expression is evaluated in the context of an
environment
O So far, the current environment is either:
The global frame alone, or
A local frame, followed by the global frame

O Important properties of environments:
An environment is a sequence of frames

The earliest frame that contains a binding for a name
determines the value that the name evaluates to

O The scope of a name is the region of code that has

Multiple Environments in a Diagram @

Every expression is evaluated in the context of an environment.

The earliest frame that contains a binding for a name determines
the value that the name evaluates to.

mul(x, x)
from operator import mul e Global frame func mul(...)
def square(Xhasssssssuas .)=+ > mul

P
- return Ml (x, o unc square (x)

square(square(3)) %

Example: htp://goo.gl/hrfnV

access to it
Formal Parameters @
def square(x): def square(y):
return mul(x, x) vs return mul(y, y)
from operator import mul
def squareﬁ:
return "‘“1@* Global frame func mul(...)
square(-2)
mul
func square!
square a
Formal parameters square
have local scope 2
Return 4

value

Example: http://goo.gl/boCk0

Life Cycle of a User-Defined Function @

Def statement:(Formal parameter Return What happens?

(Name N L(\express.bn

Def statement

Call expression: ,' ¥ Op's evaluated
operator: square Function called
function: func square(x) with argument(s)

New frame!

Function created

Name bound

Calling/Applying: 5

Params bound

) Body executed

