
CS61A Lecture 3

Amir Kamil
UC Berkeley

January 28, 2013

 Reminder: hw0 due tonight, hw1 due Wed.

 In-class quiz on Friday
 Covers through Wednesday’s lecture
 Bring a writing implement

 Hog project out
 Get started early!
More on hog next time

Announcements

 Primitive Expressions and Statements
 The simplest building blocks of a language

 Means of Combination
 Compound elements built from simpler ones

 Means of Abstraction
 Elements can be named and manipulated as units

The Elements of Programming

Environment Diagrams

Name Value

Binding

Import statement

Assignment statement

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and
expressions
Next line is highlighted

Frames (right): Code (left):

Environment diagrams visualize the interpreter’s process.

Example: http://goo.gl/SK13i

http://goo.gl/SK13i

User-Defined Functions

Named values are a simple means of abstraction

Named computational processes are a more powerful means of
abstraction

<name>(<formal parameters>):
return <return expression>

>>> def

Execution procedure for def statements:
1. Create a function value with signature

<name>(<formal parameters>)

2. Bind <name> to that value in the current frame

Function “signature” indicates how many parameters

Function “body” defines a computational process

Calling User-Defined Functions

Procedure for applying user-defined functions (version 1):
1. Add a local frame
2. Bind formal parameters to arguments in that frame
3. Execute the body of the function in the new environment

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

Example: http://goo.gl/boCk0

http://goo.gl/boCk0

Calling User-Defined Functions

Procedure for applying user-defined functions (version 1):
1. Add a local frame
2. Bind formal parameters to arguments in that frame
3. Execute the body of the function in the new environment

A function’s signature has all
the information to create a

local frame

Example: http://goo.gl/boCk0

http://goo.gl/boCk0

Looking Up Names

Procedure for looking up a name from inside a function (v. 1):
1. Look it up in the local frame
2. If not in local frame, look it up in the global frame
3. If in neither frame, generate error

2

1

Example: http://goo.gl/boCk0

http://goo.gl/boCk0

 Every expression is evaluated in the context of an
environment

 So far, the current environment is either:
 The global frame alone, or
 A local frame, followed by the global frame

 Important properties of environments:
 An environment is a sequence of frames
 The earliest frame that contains a binding for a name

determines the value that the name evaluates to

 The scope of a name is the region of code that has
access to it

General Lookup Procedure

Multiple Environments in a Diagram

1
2
2

1

1

Every expression is evaluated in the context of an environment.

The earliest frame that contains a binding for a name determines
the value that the name evaluates to.

mul(x, x)

Example: http://goo.gl/hrfnV

http://goo.gl/hrfnV

Formal Parameters

def square(x):
 return mul(x, x)

def square(y):
 return mul(y, y) vs

Formal parameters
have local scope

Example: http://goo.gl/boCk0

http://goo.gl/boCk0

Life Cycle of a User-Defined Function

Def statement:

Call expression:

square(x):
return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

Formal parameter

(return statement)

Function created

Name bound

operand: 2+2
argument: 4

Op's evaluated

Function called
with argument(s)

What happens?

operator: square
function: func square(x)

Signature

4

16

New frame!

Params bound

Body executed

Argument

Return value

	CS61A Lecture 3
	Announcements
	The Elements of Programming
	Environment Diagrams
	User-Defined Functions
	Calling User-Defined Functions
	Calling User-Defined Functions
	Looking Up Names
	General Lookup Procedure
	Multiple Environments in a Diagram
	Formal Parameters
	Life Cycle of a User-Defined Function

