
LOGIC PROGRAMMING AND UNIFICATION 12
COMPUTER SCIENCE 61A

April 25, 2013

1 Introduction

Over the semester, we have been using imperative programming – a programming style
where code is written as a set of instructions for the computer. In this section, we intro-
duce declarative programming – code that declares what we want, not how to do it. Logic
programming (what we are learning) is a type of declarative programming.

In this class, we will be using a language called Logic. The Logic language was based on
the Scheme project and also borrows a few ideas from Prolog.

2 Simple Facts and Queries

In Logic, you can define facts. Facts are simply Scheme lists of relations and relations are
simply Scheme lists of symbols. Remember, relations are NOT call expressions; instead,
relations are used to express relationships between symbols.

Here’s an example of a fact:

> (fact (sells supermarket groceries))

This line of code says: “This is a fact: supermarkets sell groceries”. When we declare
something as a fact, we are simply saying that it is a true statement. You can think of a
fact as an axiom, i.e., something that is fundamentally true.

“sells” is a quality that relates two things, “supermarket” and “groceries.” What are the
values of “supermarket” and “groceries”? They have no values! They are symbols – sym-
bols are Logic’s primitives.

1



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 2
Having defined some facts, we can make queries – in other words, we can ask Logic for
information based on the facts that we’ve defined:

> (query (sells supermarket groceries))
Success!
> (query (sells supermarket books))
Failed.
> (query (sells supermarket ?stuff))
Success!
stuff: groceries

The first query asks, ”Is it a fact that supermarkets sell groceries?” and the second query
asks, ”Is it a fact that supermarkets sell books?”. The third query above is equivalent to
asking “What do supermarkets sell?” Logic replies that supermarkets sell groceries, based
on the previously defined fact.

Note that ?stuff is a variable in Logic, whereas supermarket is a symbol. supermarket
is always going to be supermarket, but ?stuff is unknown – it is only after the query
that we know what the value of ?stuff is.

A similar query is

> (query (sells ?place groceries))
Success!
place: supermarket

This query is equivalent to asking “Which places sell groceries?” Once again, Logic
replies based on the previously defined fact.

We can also query both multiple elements of a relation:

> (query (sells ?place ?stuff))
Success!
place: supermarket stuff: groceries

This is equivalent to asking “What are places that sell stuff, and what stuff do they sell?”
Logic will tell you what each variable should be based on previously defined facts.

In Logic, we can also model hierarchical data by nesting relations inside of other relations.
For example:

(fact (person (name bob) (age 49)))
(fact (person (name alice) (age 20)))

declares two facts. The first fact asserts that there exists a person whose name is Bob and
whose age is 49. The second fact asserts that there exists a person whose name is Alice
and whose age is 20.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 3
Moreover, we can query the facts that we previously defined:

> (query (person (name ?first-name) (age 49)))
Success!
first-name: bob
> (query (person (name bob) ?age))
Success!
age: (age 49)

The first query asks, ”What is the name of a person whose age is 49?” and the second
query asks, ”What is the age of a person named Bob?”.

2.1 Questions

1. Write a fact that checks if two elements are equal.

Solution:

(fact (equal ?x ?x))

2. Define a set of facts for a “mall,” which has the following qualities:

• malls sell shoes and clothes

• malls are larger than supermarkets

• malls are popular

Solution:

(fact (sells mall shoes))
(fact (sells mall clothes))
(fact (larger mall supermarkets))
(fact (popular mall))

3. Define a set of facts to model the table of data below.
Name Number Color Type
Bulbasaur 001 Green Grass
Charmander 004 Red Fire
Squirtle 007 Blue Water
Caterpie 010 Green Bug
Pikachu 025 Yellow Electric

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 4

Solution:

> (fact (pokemon (name bulbasaur) (number 1) (color green)
(type grass)))

> (fact (pokemon (name charmander) (number 4) (color red)
(type fire)))

> (fact (pokemon (name squirtle) (number 7) (color blue)
(type water)))

> (fact (pokemon (name caterpie) (number 10) (color green)
(type bug)))

> (fact (pokemon (name pikachu) (number 25) (color yellow)
(type electric)))

3 Complex Facts

In Logic, you can also define more complex facts. For example:

> (fact (sells-same ?store1 ?store2)
(sells ?store1 ?item)
(sells ?store2 ?item)

)

Here is the basic syntax of a complex fact:

(fact (‘‘conclusion’’)
(‘‘hypothesis1’’)
(‘‘hypothesis2’’)

etc.
)

This is equivalent to saying “the conclusion is true if all the hypotheses are true.” If even
one of the hypotheses is false, the conclusion cannot be proven using this fact.

For example, the sells-same complex fact is equivalent to saying “store1 and store2
sell the same thing if store1 sells item and store2 also sells the same item.”

You can perform fact-checking with complex facts, just like with simple facts:

> (fact (sells farmers-market groceries))
> (fact (sells starbucks coffee))
> (query (sells-same supermarket farmers-market))
Success!
> (query (sells-same supermarket starbucks))

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 5
Failed.

We can also do querying:

> (query (sells-same ?store supermarket))
Success!
store: farmers-market

This is equivalent to asking “what store sells the same thing as a supermarket?”

We can also ask “what stores sell the same thing?”

> (query (sells-same ?store1 ?store2))
Success!
store1: supermarket store2: farmers-market

3.1 Questions

1. Write simple and complex facts for every-other, a relation between two lists that is
satisfied if and only if the second list is the same as the first list, but with every other
element removed.

> (query (every-other (frodo merry sam pippin) ?x))
Success!
x: (frodo sam)
> (query (every-other (gandalf) ?x))
Success!
x: (gandalf)

Solution:

(fact (every-other () ()))
(fact (every-other ?x ?x))
(fact (every-other (?a ?b . ?l-rest) (?a . ?r-rest))

(every-other ?l-rest ?r-rest)
)

2. Write facts for prefix, a relation between two lists that is satisfied if and only if
elements of the first list are the first elements of the second list, in order.

> (query (prefix (being for the) (being for the
benefit of mister kite)))

Success!
> (query (prefix (for no one) (for no one)))

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 6
Success!
> (query (prefix () (got to get you into my life)))
Success!
> (query (prefix (want i to) (i want to hold your hand)))
Failed.

Solution:

(fact (prefix () ?any-list))
(fact (prefix (?first . ?small) (?first . ?big))

(prefix ?small ?big)
)

3. Write facts for sublist, a relation between two lists that is satisfied if and only if the
first is a consecutive sublist of the second. For example:

> (query (sublist (give) (never gonna give you up)))
Success!
> (query (sublist (you up) (never gonna give you up)))
Success!
> (query (sublist (never gonna give) (never gonna give you up)))
Success!
> (query (sublist () (never gonna give you up)))
Success!
> (query (sublist (never give up) (never gonna give you up)))
Failed.
> (query (sublist (let you down) (never gonna give you up)))
Failed.

Hint: You will want to use the prefix fact that you previously defined.

Solution:

(fact (sublist ?a ?b) (prefix ?a ?b))

(fact (sublist ?sub (?first . ?rest)) (sublist ?sub ?rest))

4. Write a set of facts to implement the subs relation with components old, new, input,
and output. The first two are symbols; the last two can be symbols or lists. The out-
put should be the same as the input except that every appearance of old is replaced
by new.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 7
> (query (subs romeo fred (romeo oh romeo wherefore art thou romeo) ?x))
Success!
x: (fred oh fred wherefore art thou fred)

Solution:

(fact (subs ?old ?new () () )
)

(fact (subs ?old ?new (?old . ?rest1) (?new . ?rest2))
(subs ?old ?new ?rest1 ?rest2)

)

(fact (subs ?old ?new (?x . ?rest1) (?x . ?rest2))
(subs ?old ?new ?rest1 ?rest2)

)

(fact (subs ?old ?new (?first1 . ?rest1) (?first2 . ?rest2))
(subs ?old ?new ?first1 ?first2)
(subs ?old ?new ?rest1 ?rest2)

)

Note: this solution does not work quite as intended because of this case:

(fact (subs ?old ?new (?x . ?rest1) (?x . ?rest2))
(subs ?old ?new ?rest1 ?rest2)

)

We have no way of specifying that the value represented by the variable ?x is not
the same value represented by ?old or ?new. Therefore, we get much more output
than the above ”doctest” query implies (try it out to see!).

4 Unification

One of the basic operations that we try to compute in our logic interpreter is to unify
two relations. In its simplest form, unification is finding an assignment for variables that
makes two relations the same.

Recall from lecture that unification recursively unifies each pair of corresponding ele-
ments in two relations, accumulating an assignment. First, we must look up variables in
the current environment. Then, we must establish new bindings to unify those elements.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 8
Let’s take a look at an example and walk through the execution process.

(?first ?first ?second ?second)

((a b ?x) (a ?y c) (a c ?y) (a ?x b))

First, we lookup the first value, ?first which can be substituted with (a b ?x). Then,
we lookup the next variable, ?first which is the same as the initial variable that we
looked up. We assign ?first the value of (a ?y c). Since the variables were the same,
we must verify that the two values are equivalent. So, we check to see if there is valid
matching between (a b ?x) and (a ?y c). We verify that is true by letting ?x be c
and ?y be b. We repeat this process for the rest of the items in the relation.

Now that we’ve had some practice, let’s work on a few problems.

4.1 Questions

1. Which of the following relations can be unified?

(a) (?x ?y ?x)

(b) (a (a b) a)

(c) (?x ?z a)

(d) (?z (?x ?y) ?x)

Solution:

(a) and (b), {x: a, y: (a b)}
(a) and (c), {x: a, y: z}
(b) and (c), {x: a, z: (a b)}
(b) and (d), {x: a, y: b, z: a}

2. Which of the following relations can be unified?

(a) (?x (1 2) (3 ?y))

(b) (?y (1 ?y) (?x ?x))

(c) (?z ?y ?z)

(d) ((1 2) ?x ?x)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 9

Solution:

(a) and (c), {x: (3 (1 2)), y: (1 2), z: (3 (1 2))}
(c) and (d), {x: (1 2), y: (1 2), z: (1 2)}

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 10
Let’s walk through the algorithm for unification. The unify function is implemented
via a recursive process which keeps performing unification on corresponding parts
of two expressions until a contradiction is reached or a viable binding to all variables
can be established.

Let us begin with an example. The pattern (?x ?x) can match the pattern ((a ?y c) (a b
?z)) because there is an expression with no variables that matches both: ((a b c) (a b
c)). Unification identifies this solution via the following steps:

1. To match the first element of each pattern, the variable ?x is bound to the expres-
sion (a ?y c).

2. To match the second element of each pattern, first the variable ?x is replaced by
its value. Then, (a ?y c) is matched to (a b ?z) by binding ?y to b and ?z to c.

As a result, the bindings placed in the environment passed to unify contain entries for
?x, ?y, and ?z:

>>> e = read_line("(?x ?x)")
>>> f = read_line(" ((a ?y c) (a b ?z))")
>>> env = Frame(None)
>>> unify(e, f, env)
True
>>> env.bindings
{’?z’: ’c’, ’?y’: ’b’, ’?x’: Pair(’a’, Pair(’?y’, Pair(’c’, nil)))}

The result of unification may bind a variable to an expression that also contains vari-
ables, as we see above with ?x bound to (a ?y c). The bind function recursively and
repeatedly binds all variables to their values in an expression until no bound variables
remain.

>>> print(bind(e, env))
((a b c) (a b c))

In general, unification proceeds by checking several conditions. The implementation
of unify directly follows the description below.

1. Both inputs e and f are replaced by their values if they are variables.

2. If e and f are equal, unification succeeds.

3. If e is a variable, unification succeeds and e is bound to f.

4. If f is a variable, unification succeeds and f is bound to e.

5. If neither is a variable, both are not lists, and they are not equal, then e and f
cannot be unified, and so unification fails.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 12: LOGIC PROGRAMMING AND UNIFICATION Page 11
6. If none of these cases holds, then e and f are both pairs, and so unification is

performed on both their first and second corresponding elements.

Here is the actual code for reference:

def unify(e, f, env):
"""Destructively extend ENV so as to unify (make equal)
e and f, returning True if this succeeds and False
otherwise. ENV may be modified in either case
(its existing bindings are never changed)."""
e = lookup(e, env)
f = lookup(f, env)
if e == f:

return True
elif isvar(e):

env.define(e, f)
return True

elif isvar(f):
env.define(f, e)
return True

elif scheme_atomp(e) or scheme_atomp(f):
return False

else:
return unify(e.first, f.first, env) and \

unify(e.second, f.second, env)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang


	Introduction
	Simple Facts and Queries
	Questions

	Complex Facts
	Questions

	Unification
	Questions


