
ITERATORS, GENERATORS, AND STREAMS 11
COMPUTER SCIENCE 61A

April 17, 2013

1 Introduction

Infinite sequences frequently arise in computer science. For example, the sequence of
all natural numbers is an infinite sequence, because there is no “last” natural number.
However, it is impossible to physically store an infinite amount of data. How do we get
around this?

In this section, we will learn about iterators, generators, and streams – each of these con-
structs is designed to represent infinite sequences in a finite amount of memory.

2 Iterators

An iterator is an object that represents a sequence of values. Here is an example of a
class that implements Python’s iterator interface. This iterator calculates all of the natural
numbers one-by-one, starting from zero:

class Naturals():
def __init__(self):

self.current = 0
def __next__(self):

result = self.current
self.current += 1
return result

def __iter__(self):
return self

1



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 2
There are two components of Python’s iterator interface: the next method, and the
iter method.

2.1 next

The next method does two things:

1. calculates the next value

2. checks if it has any values left to compute

To return the next value in the sequence, the iterator does some computation defined in
the next method.

When there are no more values left to compute, the next method must raise a type of
exception called StopIteration. This signals the end of the sequence.

Note: the next method defined above does NOT raise any StopIteration excep-
tions. Why? Because there are always more values left to compute! Remember, there is no
“last natural number”, so there is technically no “end of the sequence.” However, if you
wanted to define a finite iterator, then you would raise a StopIteration after returning
the final value.

2.2 iter

The purpose of the iter method is to return an iterator object. By definition, an
iterator object is an object that has implemented both the next and iter methods.

This has an interesting consequence. If a class implements both a next method and
a iter method, its iter method can just return self (like in the example). Since
the class implements both next and iter , it is technically an iterator object, so its
iter method can just return itself.

2.3 Implementation

When defining an iterator object, you should always keep track of how much of the se-
quence has already been computed. In the above example, we use an instance variable
self.current to keep track.

Iterator objects maintain state. Successive calls to next will most likely output differ-
ent values each time, so next is considered non-pure.

How do we call next and iter ? Python has built-in functions called next and
iter for this. Calling next(some iterator) will then cause Python to implicitly call
some iterator’s next method. Calling iter(some iterator) will make a simi-
lar implicit call to some iterator’s iter method.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 3
For example, this is how we would use the Naturals iterator:

>>> nats = Naturals()
>>> nats_iter = iter(nats)
>>> next(nats_iter)
0
>>> next(nats_iter)
1
>>> next(nats_iter)
2

However, we don’t really need to call iter on nats. Why not?

One other note: you can use iterator objects in for loops. In other words, any object that
satisfies the iterator interface can be iterated over:

>>> nats = Naturals()
>>> for n in nats:

print(n)
0
1
2
... # Forever!

This works because the Python for loop implicitly calls the iter method of the object
being iterated over, and repeatedly calls next on it. In other words, the above interaction
is (basically) equivalent to:

nats_iter = iter(nats)
is_done = False
while not is_done:

try:
val = next(nats_iter)
print(val)

except StopIteration:
is_done = True

2.4 Questions

1. Define an iterator whose i-th element is the result of combining the i-th elements of
two input iterables using some binary operator, also given as input. The resulting
iterator should have a size equal to the size of the shorter of its two input iterators.

>>> from operator import add
>>> evens = Iter_Combiner(Naturals(), Naturals(), add)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 4
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

class Iter_Combiner():
def __init__(self, iter1, iter2, combiner):

Solution:

self.iter1 = iter(iter1)
self.iter2 = iter(iter2)
self.combiner = combiner

def __next__(self):

Solution:

return self.combiner(next(self.iter1), next(self.iter2))

def __iter__(self):

Solution:

return self

2. What is the result of executing this sequence of commands?

>>> naturals = Naturals()
>>> doubled_naturals = Iter_Combiner(naturals, naturals, add)
>>> next(doubled_naturals)

Solution: 1

>>> next(doubled_naturals)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 5

Solution: 5

3. Create an iterator that generates the sequence of Fibonacci numbers.

class Fibonacci_Numbers():
def __init__(self):

Solution:

self.current = 0
self.next = 1

def __next__(self):

Solution:

res = self.current
self.current, self.next = self.next, self.current + self.next
return res

def __iter__(self):

Solution:

return self

3 Generators

A generator is a special kind of Python iterator that uses a yield statement instead of a
return statement to report values.

Here is an iterator for the natural numbers written using the generator construct:

def generate_naturals():
current = 0
while True:

yield current
current += 1

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 6
Calling generate naturals() will return a generator object:

>>> gen = generate_naturals()
>>> gen
<generator object gen at ...>

To use the generator object, you then call next on it:

>>> next(gen)
0
>>> next(gen)
1
>>> next(gen)
2

Think of a generator object as containing an implicit next method. This means, by
definition, a generator object is an iterator.

3.1 yield

The yield statement is similar to a return statement. However, while a return state-
ment causes the current environment to be destroyed after a function exits, a yield state-
ment causes the environment to be saved until the next time next is called, which
allows the generator to automatically keep track of the iteration state.

Once next is called again, execution picks up from where the previously executed
yield statement left off, and continues until the next yield statement (or the end of the
function) is encountered.

Including a yield statement in a function automatically signals to Python that this func-
tion will create a generator. When we call the function, it will return a generator object,
instead of executing the code inside the body. When the returned generator’s next
method is called, the code in the body is executed for the first time, and stops executing
upon reaching the first yield statement.

A Python function can either use return statements or yield statements in the body to
output values. Having both will raise an error.

3.2 Implementation

Because generators are technically iterators, you can implement iter methods using
only generators. For example,

class Naturals():
def __init__(self):

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 7
self.current = 0

def __iter__(self):
while True:

yield self.current
self.current += 1

The usage of a Naturals object is exactly the same as before:

>>> nats = Naturals()
>>> nats_iter = iter(nats)
>>> next(nats_iter)
0
>>> next(nats_iter)
1
>>> next(nats_iter)
2

There are a couple of things to note:

• No next method in Naturals: Remember, iter just has to return an object
that has implemented a next method. Since generators have their own next
method, the new Naturals implementation is perfectly valid.

• nats is a Naturals object – nats iter is a generator: do not treat nats as the
iterator!

Since generators are iterators, you can also use generators in for loops.

3.3 Questions

1. Write a generator function that returns lists of all subsets of the positive integers from
1 to n. Each call to this generator’s next method will return a list of subsets of
the set [1, 2, ..., n], where n is the number of times next was previously
called.

>>> subsets = generate_subsets()
>>> next(subsets)
[[]]
>>> next(subsets)
[[], [1]]
>>> next(subsets)
[[], [1], [2], [1, 2]]

def generate_subsets():

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 8

Solution:

subsets = [[]]
n = 1
while True:

yield subsets
subsets = subsets + [s + [n] for s in subsets]
n += 1

2. Define a generator that yields the sequence of perfect squares.

def perfect_squares():

Solution:

i = 0
while True:

yield i * i
i += 1

3. Remember the hailstone sequence from homework 1? Implement it using a generator!
To generate a hailstone sequence:

• Pick a positive number n

• If n is even, divide it by 2

• If n is odd, multiply it by 3 and add 1

• Continue this process until n is 1

def generate_hailstone(n=10):

Solution:

while n != 1:
yield n
if (n % 2) == 0:

n = n / 2
else:

n = 3 * n + 1
yield n

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 9

4 Streams

A stream is our third example of a lazy sequence. A stream is a lazily evaluated RList. In
other words, the stream’s elements (except for the first element) are only evaluated when
the values are needed.

Take a look at the following code:

class Stream(object):
class empty(object):

def __repr__(self):
return ’Stream.empty’

empty = empty()

def __init__(self, first, compute_rest, empty= False):
self.first = first
self._compute_rest = compute_rest
self.empty = empty
self._rest = None
self._computed = False

@property
def rest(self):

assert not self.empty, ’Empty streams have no rest.’
if not self._computed:

self._rest = self._compute_rest()
self._computed = True

return self._rest

def __repr__(self):
return ’Stream({0}, <...>)’.format(repr(self.first))

We represent Streams using Python objects, similar to the way we defined RLists. We nest
streams inside one another, and compute one element of the sequence at a time.

Note that instead of specifying all of the elements in init , we provide a function,
compute rest, that encapsulates the algorithm used to calculate the remaining elements
of the stream. Remember that the code in the function body is not evaluated until it is
called, which lets us implement the desired evaluation behavior.

This implementation of streams also uses memoization. The first time a program asks a
Stream for its rest field, the Stream code computes the required value using compute rest,

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 10
saves the resulting value, and then returns it. After that, every time the rest field is ref-
erenced, the stored value is simply returned and it is not computed again.

Here is an example:

def make_integer_stream(first=1):
def compute_rest():

return make_integer_stream(first+1)
return Stream(first, compute_rest)

Notice what is happening here. We start out with a stream whose first element is 1, and
whose compute rest function creates another stream. So when we do compute the
rest, we get another stream whose first element is one greater than the previous element,
and whose compute rest creates another stream. Hence, we effectively get an infinite
stream of integers, computed one at a time. This is almost like an infinite recursion, but
one which can be viewed one step at a time, and so does not crash.

4.1 Questions

1. Write a procedure make fib stream() that creates an infinite stream of Fibonacci
Numbers. Make the first two elements of the stream 0 and 1.

Hint: Consider using a helper procedure that can take two arguments, then think
about how to start calling that procedure.

def make_fib_stream():

Solution:

return fib_stream_generator(0, 1)
def fib_stream_generator(a, b):

def compute_rest():
return fib_stream_generator(b, a+b)

return Stream(a, compute_rest)

2. Write a procedure sub streams that takes in two streams s1, s2, and returns a new
stream that is the result of subtracting elements from s1 by elements from s2. For in-
stance, if s1 was (1, 2, 3, ...) and s2 was (2, 4, 6, ...), then the output
would be the stream (-1, -2, -3, ...). You can assume that both Streams are
infinite.

def sub_streams(s1, s2):

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 11

Solution:

def compute_rest():
return sub_streams(s1.rest, s2.rest)

return Stream(s1.first - s2.first, compute_rest)

3. Define a procedure that inputs an infinite Stream, s, and a target value and returns
True if the stream converges to the target within a certain number of values. For this
example we will say the stream converges if the difference between two consecutive
values and the difference between the value and the target drop below max diff for
10 consecutive values. (Hint: create the stream of differences between consecutive
elements using sub streams)

def converges_to(s, target, max_diff=0.00001, num_values=100):

Solution:

count = 0
deriv = sub_streams(s.rest, s)
for i in range(num_values):

if abs(s.first - target) <= max_diff and \
abs(deriv.first) <= max_diff:
count += 1

else:
count = 0

if count == 10:
return True

deriv = deriv.rest
s = s.rest

return False

4.2 Higher Order Functions on Streams

Naturally, as the theme has always been in this class, we can abstract our stream proce-
dures to be higher order. Take a look at filter stream:

def filter_stream(filter_func, stream):
def make_filtered_rest():

return filter_stream(filter_func, stream.rest)
if Stream.empty:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 12
return stream

elif filter_func(stream.first):
return Stream(stream.first, make_filtered_rest)

else:
return filter_stream(filter_funct, stream.rest)

You can see how this function might be useful. Notice how the Stream we create has as its
compute rest function a procedure that “promises” to filter out the rest of the Stream
when asked. So at any one point, the entire stream has not been filtered. Instead, only the
part of the stream that has been referenced has been filtered, but the rest will be filtered
when asked. We can model other higher order Stream procedures after this one, and we
can combine our higher order Stream procedures to do incredible things!

4.3 Questions

1. In a similar model to filter stream, let’s recreate the procedure map stream from
lecture, that given a stream stream and a one-argument function func, returns a
new stream that is the result of applying func on every element in stream.

def stream_map(func, stream):

Solution:

def compute_rest():
return stream_map(func, stream.rest)

if stream.empty:
return stream

else:
return Stream(func(stream.first), compute_rest)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 11: ITERATORS, GENERATORS, AND STREAMS Page 13
2. What does the following Stream output? Try writing out the first few values of the

stream to see the pattern.

def my_stream():
def compute_rest():

return add_streams(map_stream(double,
my_stream()),
my_stream())

return Stream(1, compute_rest)

Solution: Powers of 3: 1, 3, 9, 27, 81, ...

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang


	Introduction
	Iterators
	__next__
	__iter__
	Implementation
	Questions

	Generators
	yield
	Implementation
	Questions

	Streams
	Questions
	Higher Order Functions on Streams
	Questions


