
CALCULATOR 10
COMPUTER SCIENCE 61A

April 11th, 2013

We are beginning to dive into the realm of interpreting computer programs - that is, writ-
ing programs that understand programs. In order to do so, we’ll have to examine pro-
gramming languages in-depth. The Calculator language, a subset of Scheme, will be the
first of these examples.

In today’s discussion, we’ll be looking at implementing Calculator using regular Python.
We’ll also take a look at Exceptions, a mechanism for handling unexpected execution -
quite common when handling user input.

1 Calculator

For now, our Calculator language will be a Scheme-syntax language that can handle the
four basic arithmetic operations. These operations can be nested and can take varying
numbers of arguments. Here’s a couple examples of Calculator in action:

> (+ 2 2)
4

> (- 5)
-5

> (* (+ 1 2) (+ 2 3))
15

Our goal now is to write an interpreter for this Calculator language. The job of an inter-
preter is, given an expression, evaluate its meaning. So let’s talk about expressions.

1

DISCUSSION 10: CALCULATOR Page 2
1.1 Representing Expressions

There are two kinds of expressions. A call expression is a Scheme list - the first element
is the operator, and each subsequent element is an operand. A primitive expression is an
operator symbol or number. When we type a line at the Calculator prompt and hit enter,
we’ve just sent an expression to the interpreter.

To represent Scheme lists in Python, we’ll be using Pair objects. The class definition is
below:

class Pair(object):

def __init__(self, first, second):
self.first = first
self.second = second

def __len__(self):
n, second = 1, self.second
while isinstance(second, Pair):

n += 1
second = second.second

if second is not nil:
raise TypeError("length attempted on improper list")

return n

def __getitem__(self, k):
if k < 0:

raise IndexError("negative index into list")
j, y = 0, self
while j < k:

if y.second is nil:
raise IndexError("list index out of bounds")

elif not isinstance(y.second, Pair):
raise TypeError("ill-formed list")

j, y = j + 1, y.second
return y.first

def map(self, fn):
"""Returns a Scheme list after mapping Python function
fn over self."""
mapped = fn(self.first)
if self.second is nil or isinstance(self.second, Pair):

return Pair(mapped, self.second.map(fn))

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 10: CALCULATOR Page 3
else:

raise TypeError("ill-formed list")

def to_py_list(self):
"""Returns a Python list containing the elements of this
Scheme list."""
y, result = self, []
while y is not nil:

result += [y.first]
if not isinstance(y.second, Pair) or y.second is not nil:

raise TypeError("ill-formed list")
y = y.second

return result

class nil(object):
"""The empty list"""

def __len__(self):
return 0

def map(self, fn):
return self

nil = nil() #nil now refers to a single instance of nil class

1.2 Questions

1. Translate the following Python representation of Calculator expressions into the proper
Scheme-syntax:

>>> Pair(’+’, Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair(’+’, Pair(’1’, Pair(Pair(’*’, Pair(2, Pair(3, nil))), nil)))

Solution:

> (+ 1 2 3 4)
> (+ 1 (* 2 3))

2. Translate the following Calculator expression into calls to the Pair constructor.

> (+ 1 2 (- 3 4))

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 10: CALCULATOR Page 4

Solution:

>>> Pair(’+’, Pair(1, Pair(2, Pair(
Pair(’-’, Pair(3, Pair(4, nil))), nil))))

1.3 Evaluation

So what is evaluation? Evaluation discovers the form of an expression and executes a
corresponding evaluation rule.

Primitive expressions are evaluated directly. Call expressions are evaluated recursively:
(1) Evaluate each operand expression, (2) Collect their values as a list of arguments, and
(3) Apply the named operator to the argument list.

Here’s calc eval:

def calc_eval(exp):
if not isinstance(exp, Pair): #expression is primitive

return exp
else:

operator, operands = exp.first, exp.second
args = operands.map(calc_eval).to_py_list()
return calc_apply(operator, args)

As you can see, all we’ve done is follow the rules of evaluation outlined above. If the ex-
pression is primitive (i.e. not a Scheme list), simply return it. Else, evaluate the operands
and apply the operator to the evaluated operands.

How do we apply the operator? We’ll use calc apply, with dispatching on the operator
name:

def calc_apply(operator, args):
if operator == ’+’:

return sum(args)
elif operator == ’-’:

if len(args) == 1:
return -args[0]

else:
return sum(args[0], [-args for args in args[1:]])

elif operator == ’*’:
return reduce(mul, args, 1)

Depending on what the operator is, we can match it to a corresponding Python call. Each
conditional clause above handles the application of one operator.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 10: CALCULATOR Page 5
Something very important to keep in mind: calc eval deals with expressions, calc apply
deals with values.

1.4 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc evalwould they each generate? How many calls to calc apply?

Solution:

> (+ 2 4 6 8)
5 calls to eval. 1 call to apply.
> (+ 2 (* 4 (- 6 8)))
7 calls to eval. 3 calls to apply.

2. The - operator will fail if given no arguments. Add error handling to raise an excep-
tion when this situation is encountered (the type of exception is unimportant).

Solution:

...
if operator == ’-’:

if len(args) == 0:
raise TypeError(’need at least one arg’)

...

3. We also want to be able to perform division, as in (/ 4 2). Supplement the existing
code to handle this. If division by 0 is attempted, or if there are less than 2 arguments
supplied, you should raise an exception (the type of exception is unimportant).

Solution:

...
if operator == ’/’:

if len(args) < 2:
raise TypeError(’too few args’)

if 0 in args[1:]:
raise ZeroDivisionError

else:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 10: CALCULATOR Page 6

return reduce(truediv, args[1:], args[0])
...

4. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and oper-
ator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to follow
the same process as in implementing * and /. Alyssa is not so sure. Who’s right?

Solution: Alyssa. We can’t handle and in the apply step since and is a special
form: it is short-circuited. We need to create a special case for it in calc eval.

5. Now that you’ve had a chance to think about it, you decide to try implementing and
yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already
been implemented for you.

Solution:

def calc_eval(exp):
if not isinstance(exp, Pair):

return exp
elif exp.first == ’and’:

return eval_and(exp.second)
else:

...

def eval_and(operands):
cur = operands
while cur is not nil:

if not calc_eval(cur.first):
return False

cur = cur.second
return True

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

	Calculator
	Representing Expressions
	Questions
	Evaluation
	Questions

