
INHERITANCE, MULTIPLE REPRESENTATION,

GENERIC FUNCTIONS 8
COMPUTER SCIENCE 61A

March 13, 2013

1 Inheritance

So far, we’ve been working with objects by defining classes and creating instances. Now
that you are familiar with how object system works, let’s explore another powerful tool
that comes with objects system–inheritance.

Consider writing Dog and Cat classes. You can imagine that they’d both have name,
age, and owner instance variables, and also eat and talk methods. That’s a lot of effort
for writing the same code! This is where Inheritance steps in. In Python, you can create
a class and have it inherit the instance variables and methods of a parent class without
typing it all out again. All of our classes thus far have been inheriting from the object
class. They are children of the object class. Object is the top-level, generic mack-daddy of
all classes. It provides basic functionality for all objects, (it’s subtle). This is an example
of Code reusability, the idea that you shouldn’t reinvent the wheel if at all possible.

When do you want to inherit? The rule-of-thumb is when there is a hierarchical relation-
ship between two classes, where one is a type or sub-categorization of the other. This is
commonly know as a ”is a” relationship. A truck ”is a” type of vehicle and thus could
be a child class of a vehicle class. Make sure you don’t get this confused with ”has a”
relationship. A truck has a color, and therefore color would be an instance variable of
truck, not a child class.

Python has some particular syntax when it comes to inheritance. Take a look at this partial
implementation of animals:

1



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 2
current_year = 2013

class Animal(object):
def __init__(self):

self.is_alive = True # It’s alive!!!

class Pet(Animal):
def __init__(self, name, year_of_birth, owner=None):

Animal.__init__(self) # call the parent’s constructor
self.name = name
self.age = current_year - year_of_birth
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print("...")

class Dog(Pet):
def __init__(self, name, yob, owner, color):

Pet.__init__(self, name, yob, owner)
self.color = color

def talk(self):
print("Woof!")

1.1 Questions

1. What does the following code do?

>>> fido = Dog(’Fido’, 1993, ’Joe’, ’golden’)
>>> clifford = Dog(’Clifford’, 1963, ’Emily’, ’red’)
>>> fido.age

>>> fido.talk()

>>> fido.owner

>>> clifford.owner

>>> clifford.color

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 3

>>> clifford.eat(’bone’)

2. Now write a Cat class that inherits from Pet. Use parent methods wherever possible:

class Cat(Pet):
def __init__(self, name, yob, owner, lives=9):

def talk(self):
"""A cat says ’Meow!’ when asked to talk."""

def lose_life(self):
"""A cat can only lose a life if they have
at least one life. When lives reach zero,
the ’is_alive’ variable becomes False.
"""

3. More Cats!

class NoisyCat(Cat):
"""A class that behaves just like a Cat, but always
repeats things twice.
"""
def __init__(self, name, yob, owner, lives=9):

def talk(self):
"""A NoisyCat will always repeat what he/she said

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 4
twice.
"""

2 Multiple Representations

The ability to represent data using different representations without breaking the modu-
larity of a program rests on our ability to define a common message interface for the data
type.

So what exactly is an interface? An interface is the set of messages that a data type un-
derstands and can respond to. If we are talking about an object, then we can say that its
interface is made up of all of its methods and attributes. For instance, the interface for the
Person class defined in the previous section consists of the name attribute, the say, ask,
and greet methods, as well as the attributes and methods of its ancestor classes.

When implementing a common interface for an abstract data type that has multiple rep-
resentations, there must be a subset of messages that both representations understand.
This set of common messages is the common interface. A system that uses multiple data
representations and is designed with common interfaces is modular because one can add
any number of different representations without needing to change code already written.
All the implementer needs to do is to ensure that the new representation understands the
messages required by the interface.

2.1 Questions

1. What do Python strings, tuples, lists, dictionaries, ranges, etc. all have in common?
Hint: What happens when you toss one of these data types into a for loop?

2. Why cant you put something else, say an integer, into the for loop?

>>>for elem in 5:
print(elem)

Error!

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 5
3. Suppose that these datatypes all implement a common interface called Iterable that

expects the messages ’current’ and ’next’. The ’current’ attribute starts out being the
first element in the datatype. Each time we pass the ’next’ message to the datatype,
current becomes the ’next’ element in the Iterable datatype. If ’current’ is the last
element, then passing ’next will cause ’current’ to be set to None

Write a code snippet that can implement a for loop that prints out each element using
this common interface. You may pass messages to the datatype using dot notation.
(The task here is simple, but the ideas are important. We can use this common in-
terface to iterate over both lists, tuples, and ranges, which are sequences, as well as
dictionaries, which are NOT sequences.)

data = create_data()

4. After acing CS61A and becoming a renowned professor, you invent a new datatype
with magical properties. Because of the fond memories you have of your first com-
puter science course at Berkeley, you decide that the new datatype should implement
the Iterable interface described during your 8th week discussion section. On a high
level, what do you need to do?

3 Generic Operators

In the previous section, we saw how to work with multiple representations of data, by
forcing each of the representations to use a common method interface. But suppose we
wanted to generalize this further. Could we write functions that work with arguments
that dont even work with a common interface?

We are going to employ type dispatching. The idea: our generic functions will see argu-
ments of various data types. We can inspect what type of data the argument is. Now
suppose we have been keeping a table that holds functionality for interacting with spe-
cific data types. We can simply look up the arguments data type in the table, which will
return to us a function that we know will work with the arguments data type.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 6
3.1 Type Dispatching

Revisiting the complex number example, we have:

def type_tag(x):
return type_tag.tags[type(x)]

type_tag.tags = {ComplexRI: ’com’, ComplexMA: ’com’, Rational: ’rat’}

Now type tag.tags is a dictionary that associates data types (specifically, a class name)
with a key word that we can use to look up the type tag.

Next, we can implement a generic add function:

def add(z1, z2):
types = (type_tag(z1), type_tag(z2))
return add.implementations[types](z1, z2)

add.implementations = {}
add.implementations[(’com’, ’com’)] = add_complex
add.implementations[(’com’, ’rat’)] = add_complex_and_rational
add.implementations[(’rat’, ’com’)] = lambda x, y:
add_complex_and_rational(y, x)
add.implementations[(’rat’, ’rat’)] = add_rational

So what happens when we call (ComplexRI(2, 3), ComplexRI(4, 5))? Lets re-
fer to the two complex numbers as z1 and z2. type tag looks up the tag for each
them and returns com and com. We then look up (com, com) in our table of supported
implementations of add and see that we should use add complex. We then invoke
add complex(z1, z2) which works without a hitch because all the data types match
up.

3.2 Questions

The TAs have broken out in a cold war; apparently, at the last midterm-grading session,
someone ate the last piece of Cheeseboard slice and refused to admit it. It is near the end
of the semester, and Amir really needs to enter the grades. Unfortunately, the TAs repre-
sent the grades of their students differently, and refuse to change their representation to
someone elses. Amir has asked you to look into writing generic functions for Hamilton’s
and Julia’s student records.

1. Hamilton and Julia have agreed to release their implementations of student records,
which are given below:

class HN_record(object):

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 7
"""A student record formatted via Hamilton’s standard"""

def __init__(self, name, grade):
"""name is a string containing the student’s name,
and grade is a grade object"""

self.student_info = [name, grade]

class JO_record(object):
"""A student record formatted via Julia’s standard"""

def __init__(self, name, grade):
"""name is a string containing the student’s name,
and grade is a grade object"""

self.student_info = {’name’: name, ’grade’: grade}

Write functions get name and get grade, which take in a student record and return
the name and grade, respectively.

type_tag.tags = {HN_record: ’HN’, JO_record: ’JO’}

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 8
2. Hamilton and Julia also use their own grade objects to store grades. Here are the

definitions for their grade class:

class HN_grade(object):
def __init__(self, total_points):

if total_points > 90:
letter_grade = ’A’

else:
letter_grade = ’F’

self.grade_info = (total_points, letter_grade)

class JO_grade(object):
def __init__(self, total_points):

self.grade_info = total_points

Write a function compute average total, which takes in a list of records (that
could be formatted via either standard) and computes the average total points of all
the students in the list.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 8: INHERITANCE, MULTIPLE REPRESENTATION, GENERIC FUNCTIONS Page 9
3. Lastly, Amir needs you to convert all student records into the format that he uses.

Unlike Hamilton and Julia, Amir is actually helpful and provides the class definition
of his formatted student records. Unfortunately, his email was corrupted so you can
only see the first few lines of his class definition:

class AK_grade(object):
"""A student record formatted via John’s standard"""

def __init__(self, name_str, grade_num):
"""NOTE: name_str must be a string, grade_num must be a number"""

Write a function convert to AK which takes a list of student records formatted
either using Hamilton’s or Julia’s standard, and returns a list of the same student
records but now formatted using Amirs standard.

def convert_to_AK(records):

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang


	Inheritance
	Questions

	Multiple Representations
	Questions

	Generic Operators
	Type Dispatching
	Questions


