
DATA ABSTRACTION 5
COMPUTER SCIENCE 61A

February 21, 2013

1 Data Abstraction

Data abstraction is a powerful concept in computer science that allows programmers to
treat code as objects — for example, car objects, chair objects, people objects, etc. That
way, programmers don’t have to worry about how code is implemented — they just have
to know what it does.

This is especially important when programming with other people: with data abstraction,
your group members won’t have to read through every line of your code to understand
how it works before they use it — they can just assume that it does work.

Data abstraction mimics how we think about the world. For example, when you want to
drive a car, you don’t need to know how the engine was built or what kind of material the
tires are made of. You just have to know how to turn the wheel and press the gas pedal.

To facilitate data abstraction, you will need to create two types of functions: constructors
and selectors. Constructors are functions that build the abstract data type. Selectors are
functions that retrieve information from the data type.

For example, say we have an abstract data type called city. This city object will hold
the city’s name, and its latitude and longitude. To create a city object, you’d use a
function like

city = make_city(name, lat, lon)

To extract the information of a city object, you would use functions like

get_name(city)
get_lat(city)
get_lon(city)

1

DISCUSSION 5: DATA ABSTRACTION Page 2
You would use similarly-named functions to extract the latitude and the longitudes.

The following code will compute the distance between two city objects:

from math import sqrt
def distance(city1, city2):

lat_1, lon_1 = get_lat(city_1), get_lon(city_1)
lat_2, lon_2 = get_lat(city_2), get_lon(city_2)

return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

Notice that we don’t need to know how these functions were implemented. We are as-
suming that someone else has defined them for us.

It’s okay if the end user doesn’t know how functions were implemented. However, the
functions still have to be defined by someone. We’ll look into defining the constructors
and selectors later in this discussion.

1.1 Data Abstraction Practice

1. Implement closer city, a function that takes a latitude, longitude, and two cities,
and returns the name of the city that is closer.

You may only use selectors and constructors (introduced above) for this question. You
may also use the distance function defined above.

def closer_city(lat, lon, city1, city2):

Solution:

new_city = make_city(’arb’, lat, lon)
dist1 = distance(city1, new_city)
dist2 = distance(city2, new_city)
if dist1 < dist2:

return get_name(city1)
return get_name(city2)

2 Let’s be rational!

In lecture, we discussed the rational data type, which represents fractions with the
following methods:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 3
rational(n, d) - constructs a rational number with numerator n, denominator d
numer(x) - returns the numerator of rational number x
denom(x) - returns the denominator of rational number x

We also presented the following methods that perform operations with rational num-
bers:

add rationals(x, y)
mul rationals(x)
eq rationals(x)

You’ll soon see that we can do a lot with just these simple methods.

2.1 Rational Number Practice

1. Write a number that returns the given rational number x raised to positive power e.

from math import pow
def rational_pow(x, e):

Solution:

return rational(pow(numer(x), e), pow(denom(x), e))

2. The irrational number e ≈ 2.718 can be generated from an infinite series. Let’s try
calculating it using our rational number data type! The mathematical formula is as
follows:

e =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
· · ·

Write a function approx e that returns a rational number approximation of e to iter
amount of iterations. We’ve provided a factorial function.

def factorial(n):
return 1 if n == 0 else n * factorial(n - 1)

def approx_e(iter=100):

Solution:

k = 0
e = rational(0, 1)
while k < iter:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 4

e = add_rationals(e, rational(1, factorial(k)))
k += 1

return e

3. Implement the following rational number methods.

def inverse_rational(x):
"""Returns the inverse of the given non-zero rational number"""

Solution:

return rational(denom(x), numer(x))

def div_rationals(x, y):
"""Returns x / y for given rational x and non-zero rational y"""

Solution:

return mul_rationals(x, inverse_rational(y))

3 My Life for Abstraction

We’ve used data abstractions up to this point. Now let’s try creating some ourselves. So
far, we know of two ways of creating the pair abstraction.

3.1 Tuples, or, Zerg Rush!

Remember, a pair is a compound data type that holds two other pieces of data. So far, we
have provided you with two ways of representing the pair data type. The first way to
implement pairs is with the Python tuple construct.

>>> nums = (1, 2)
>>> nums[0]
1
>>> nums[1]
2

Note how we use the square bracket notation to access the data we stored in the pair. The
data is zero indexed, meaning we access the first element with nums[0] and the second

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 5
with nums[1].

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 6
Let’s now use data abstractions to recreate the popular video game Starcraft: Brood War.
In Starcraft, the three races, Zerg, Protoss, and Terran, create ”units” that they send to
attack each other.

1. Implement the constructors and selectors for the unit data abstraction using tuples.
Each unit will have a string catchphrase and an integer amount of damage.

def make_unit(catchphrase, damage):

Solution:

return (catchphrase, damage)

def get_catchphrase(unit):

Solution:

return unit[0]

def get_damage(unit):

Solution:

return unit[1]

3.2 I Long For Combat!

Data abstraction violations happen when we assume we know something about how
our data is represented. For example, if we use pairs and we forget to use a selector
and instead use the index.

>>> raynor = make_unit(’This is Jimmy.’, 18)
>>> print(raynor[1]) # violation!!!!
This is Jimmy.

In this example, we assume that raynor is represented as a tuple because we use the
square bracket indexing. However, we should have used the selector get catchphrase.
This is a data abstraction violation.

2. Units attack each other in events called battles. Let’s simulate these battles. In a battle,
each unit yells its respective catchphrase, then the unit with more damage wins the

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 7
battle. Implement battle, in which the you print the catchphrases of the first and
second in that order, then return the unit that does more damage. The first unit wins
ties. Don’t violate any data abstractions!

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 8
def battle(first, second):

"""Simulates a battle between the first and second unit
>>> zealot = make_unit(’My life for Aiur!’, 16)
>>> zergling = make_unit(’GRAAHHH!’, 5)
>>> winner = battle(zergling, zealot)
GRAAHHH!
My life for Aiur!
>>> winner is zealot
True
"""

Solution:

print(get_catchphrase(first))
print(get_catchphrase(second))
if get_damage(first) >= get_damage(second):

return first
return second

3.3 Functional Pairs, or, We Require More Minerals

The second way of constructing pairs is with higher order functions. We can implement
the functions pair and getitem pair to achieve the same goal.

>>> def pair(x, y):
"""Return a function that behaves like a two-element tuple"""
def dispatch(m):

if m == 0:
return x

elif m == 1:
return y

return dispatch
>>> def getitem_pair(p, i):

"""Return the element at index i of pair p"""
return p(i)

>>> nums = pair(1, 2)
>>> getitem_pair(nums, 0)
1
>>> getitem_pair(nums, 1)
2

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 9
Note how although using functional pairs is different syntactically from tuples, it accom-
plishes the exact same thing.

Continuing with our Starcraft example, we now want to structure the way in which we
create units. Units require resources to create, and in Starcraft, these resources are called
”minerals” and ”gas.”

1. Write constructors and selectors for a data abstraction that combines an integer amount
of minerals and gas together into a bundle. Use functional pairs.

def make_resource_bundle(minerals, gas):

Solution:

return pair(minerals, gas)

def get_minerals(bundle):

Solution:

return getitem_pair(bundle, 0)

def get_gas(bundle):

Solution:

return getitem_pair(bundle, 1)

3.4 Putting It All Together

The beauty of data abstraction is that we can treat complex data in a very simple way.
Although we’ve only been dealing with storing primitive data types in side our pairs, we
can in fact store more complex data in the exact same way. A simple example is nesting
tuples inside each other.

>>> def make_pair(a, b):
return (a, b)

>>> def get_pair(pair, i):
return pair[i]

>>> def make_pair_of_pairs(pair1, pair2):
return make_pair(pair1, pair2)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 10
>>> p = make_pair_of_pairs(make_pair(1, 2), make_pair(3, 4))
>>> get_pair(get_pair(p, 0), 0)
1
>>> get_pair(get_pair(p, 1), 0)
3

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 11
Let’s apply this to our running Starcraft example. In Starcraft, buildings are used to create
units, if given enough resources.

1. Let’s make a building pair that is constructed with a unit data type and a resource
bundle data type. This time take your choice of tuples or functional pairs in repre-
senting a building. Make sure not to violate any data abstractions.

def make_building(unit, bundle):

Solution:

return (unit, bundle)

or

return pair(unit, bundle)

def get_unit(building):

Solution:

return building[0]

or

return getitem_pair(building, 0)

def get_bundle(building):

Solution:

return building[1]

or

return getitem_pair(building, 1)

Your last task is to implement the build unit method, that when given a building
and sufficient amount of resources, builds a unit and returns it.

2. Implement build unit. It is given a building and resource bundle. First, it checks
whether the amount of resources provided is greater than or equal to the amount the
building was constructed with. If it is not, it prints out some error message. Other-
wise, it creates a copy of the building’s unit and returns it.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION 5: DATA ABSTRACTION Page 12
def build_unit(building, bundle):

"""Constructs a unit if given the minimum amount of resources.
Otherwise, prints an error message
>>> barracks = make_building(make_unit(’Go go go!’, 6),
... make_resource_bundle(50, 0))
>>> marine = build_unit(barracks, make_resource_bundle(20, 20))
We require more minerals!
>>> marine = build_unit(barracks, make_resource_bundle(50, 0))
>>> print(get_catchphrase(marine))
Go go go!
"""

Solution:

if get_minerals(bundle) < get_minerals(get_bundle(building)):
print("We require more minerals!")

if get_gas(bundle) < get_gas(get_bundle(building)):
print("We require more vespene gas!")

unit = get_unit(building)
return make_unit(get_catchphrase(unit), get_damage(unit))

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

	Data Abstraction
	Data Abstraction Practice

	Let's be rational!
	Rational Number Practice

	My Life for Abstraction
	Tuples, or, Zerg Rush!
	I Long For Combat!
	Functional Pairs, or, We Require More Minerals
	Putting It All Together

