
RECURSION, (TREE) RECURSION, (MUTUAL)

RECURSION! 4
COMPUTER SCIENCE 61A

February 14, 2013

1 Recursion

A function is recursive if it calls itself. Below is recursive factorial function.

def factorial(n):
if n == 0 or n == 1:

return 1
else:

return n * factorial(n-1)

It seems like this won’t work – we haven’t finished defining factorial, yet we’re al-
ready calling it. However, we do have one base case: when n is 0 or 1. Now we can
compute factorial(1) in terms of factorial(0), and factorial(2) in terms of
factorial(1), and factorial(3) – well, you get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: Ask yourself, ”what is the simplest argument I could possi-
bly get?” The answer should be simple, and is often given by definition. For example,
factorial(0) is 1, by definition, or the first two Fibonacci numbers are 0 and 1.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume that a
recursive call for this new problem will simply work. This is called the “leap of faith”
– as you use more recursion, you will get more used to this idea. For factorial,
we make the recursive call factorial(n-1) – this is the recursive breakdown.

3. Use your recursive call to solve the full problem: Remember that we are assuming your
recursive call just works. With the result of the recursive call, how can you solve the
original problem you were asked? For factorial, we just multiply (n− 1)! by n.

1



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 2
1.1 Cool Questions!

1. Print out a countdown using recursion.

def countdown(n):
"""
>>> countdown(3)
3
2
1
"""

Solution:

if n <= 0:
return

print(n)
countdown(n - 1)

2. Is there an easy way to change countdown to count up instead?

Solution: Move the print statement to after the recursive call.

3. Write a procedure expt(base, power), which implements the exponent function.
For example, expt(3, 2) returns 9, and expt(2, 3) returns 8. Use recursion.

def expt(base, power):

Solution:

if power == 0:
return 1

elif power < 0:
return expt(base, power + 1) / base

else:
return expt(base, power - 1) * base

4. Write sum primes up to(n), which sums up every prime up to and including n.
Assume you have an isprime() predicate.

def sum_primes_up_to(n):

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 3

Solution:

if (n <= 1):
return 0

elif (isprime(n)):
return n + sum_primes_up_to(n - 1)

else:
return sum_primes_up_to(n - 1)

OR

if (n <= 1):
return 0

else:
num_if_prime = n if isprime(n) else 0
return sum_primes_up_to(n - 1) + num_if_prime

5. Now write sum filter up to(n, pred), which is a general version that adds all
integers 1 through n that satisfy the argument pred.

def sum_filter_up_to(n, pred):

Solution:

if n <= 0:
return 0

elif pred(n):
return n + sum_filter_up_to(n - 1, pred)

else:
return sum_filter_up_to(n - 1, pred)

2 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is a
function that computes Fibonacci numbers:

def fib(n):
if n == 0:

return 0
elif n == 1:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 4
return 1

else:
return fib(n - 1) + fib(n - 2)

This is where recursion really begins to shine: it allows us to explore two different calcula-
tions at the same time. In this case, we are exploring two different possibilities (or paths):
the n − 1 case and the n − 2 case. With the power of recursion, exploring all possibilities
like this is very straightforward. You simply try everything using recursive calls for each
case, then combine the answers you get back.

This type of recursion is called tree recursion, because the different branches of computa-
tion that form from this recursion end up looking like an upside-down tree:

fib(4)

fib(2)fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems that are
naturally solved using tree recursive procedures are generally difficult to write iteratively,
and require the use of additional data structures to hold information. As a general rule
of thumb, whenever you need to try multiple possibilities at the same time, you should
consider using tree recursion.

2.1 Exercises

1. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each
time. How many different ways can I go up this flight of stairs? Write a function
count stair ways that solves this problem for me.

def count_stair_ways(n):

Solution:

if n == 1:
return 1

elif n == 2:
return 2

return count_stair_ways(n-1) + count_stair_ways(n-2)

2. Pascal’s triangle is a useful recursive definition that tells us the coefficients in the
expansion of the polynomial (x + a)n. Each element in the triangle has a coordinate,

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 5
given by the row it is on and its position in the row (which you could call its column).
Every number in Pascal’s triangle is defined as the sum of the item above it and the
item that is directly to the upper left of it. If there is a position that does not have an
entry, we treat it as if we had a 0 there. Below are the first few rows of the triangle:

Item: 0 1 2 3 4 5
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
Row 5: 1 5 10 10 5 1
...

Define the procedure pascal(row, column) which takes a row and a column, and
finds the value at that position in the triangle. Don’t use the closed-form solution, if
you know it.

def pascal(row, column):

Solution:

if column == 0:
return 1

elif row == 0:
return 0

else:
return pascal(row - 1, column) +

pascal(row - 1, column - 1)

3. The TAs want to print handouts for their students. However, for some unfathomable
reason, both the printers are broken; the first printer only prints multiples of n1, and
the second printer only prints multiples of n2. Help the TAs figure out whether or
not it is possible to print an exact number of handouts!

def hasSum(sum, n1, n2):
"""
>>> hasSum(1, 3, 5)
False
>>> hasSum(5, 3, 5) # 1(5) + 0(3) = 5
True
>>> hasSum(11, 3, 5) # 2(3) + 1(5) = 11
True

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 6
"""

Solution:

if sum == n1 or sum == n2:
return True

if sum < min(n1, n2):
return False

return hasSum(sum - n1, n1, n2) or
hasSum(sum - n2, n1, n2)

3 Mutual Recursion

Sometimes it isn’t enough to have one function call itself; sometimes functions recursively
call one another! Here is an example:

def even(n):
if n == 0:

return True
return odd(n - 1)

def odd(n):
if n == 0:

return False
return even(n - 1)

Given a positive integer, the function even will return a boolean value representing
whether or not the integer is even. However, notice that the recursive call is to odd,
not itself. We call this mutual recursion because because even and odd are defined in
terms of one another, and as a result alternatively call one another to arrive at the answer.

Mutual recursion is especially useful for when you need to deal with different data struc-
tures that interact with one another. We’ll see this later in the semester with Trees.

3.1 (Debate) Practice

1. Let’s answer the age-old question of ”What came first, the chicken or the egg?” Each
function takes an argument (pun unintended!), which is a boolean value that repre-
sents an argument for whether or not the corresponding element came first. To mirror
the debate, let’s do this:

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 7
def chicken(argument=True):

print("Chickens!")
return egg(argument)

def egg(argument=True):
print("Eggs!")
return chicken(argument)

We could argue that chickens came first by calling chicken(), but then the argument
would never be resolved. That’s unfortunate! Therefore, let’s also add generations,
which is a variable that represents which generation we are on. For example, if you
argue for the 5th generation chicken, you’re arguing for not the 4th generation egg.
The 0th generation determines the winner.

def chicken(argument, generations=0):
""" Argue whether or not the chicken came first.
>>> chicken(True)
[Insert reason chickens came first.]
>>> chicken(False) # is equivalent to egg(True)
[Insert reason eggs came first.]
>>> chicken(False, 1) # is equivalent to egg(True, 0)
[Insert reason eggs came first.]
"""

Solution:

if generations <= 0:
if argument:

return "Chickens lay eggs!"
return egg(not argument, generations)

return egg(not argument, generations - 1)

def egg(argument, generations=0):
"Argue whether or not the egg came first."""

Solution:

if generations <= 0:
if argument:

return "Eggs hatch chickens! And they’re cuter."
return chicken(not argument, generations)

return egg(not argument, generations - 1)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 4: RECURSION, (TREE) RECURSION, (MUTUAL) RECURSION! Page 8

4 Iteration vs. Recursion

We’ve written factorial recursively. Let’s compare the iterative and recursive versions:

def factorial_recursive(n):
if n <= 0:

return 1
else:

return n * factorial_recursive(n-1)

def factorial_iterative(n):
total = 1
while n > 0:

total = total * n
n = n - 1

return total

Notice that the recursive test corresponds to the iterative test. While the recursive func-
tion “works” until n is less than or equal to 0, the iterative “works” while n is greater than
0. They are essentially the same.

Let’s also compare fibonacci.

def fib_r(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return fib_r(n - 1) + fib_r(n - 2)

def fib_i(n):
curr, next = 0, 1
while n > 1:

curr, next = next, curr + next
n = n - 1

return curr

For the recursive version, we copied the definition of the Fibonacci sequence straight into
code! The nth fibonacci number is literally the sum of the two before it. Iteratively, you
need to keep track of more numbers and have a better understanding of the code.

Sometimes code is easier to write iteratively, sometimes code is easier to write recursively.
Have fun experimenting with both!

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang


	Recursion
	Cool Questions!

	Tree Recursion
	Exercises

	Mutual Recursion
	Exercises

	Iteration vs. Recursion

