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1 Warmup

1. What would Python print?

>>> albert = 2
>>> def robert(albert):
... def robert(albert):
... albert += 2
... return albert
... return robert
>>> print(robert(albert)(albert))
_____
>>> print(albert)
_____

2 Lambda Expressions

One way of returning functions is by using nested inner functions. But, what if the func-
tion you need is very short and will only be used in one particular situation? The solution
would be the lambda expression. A lambda expression has the following syntax:

lambda <args> : <body>
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With this simple expression, you can define functions on the fly, without having to use
def statements and without having to give them names. In other words, lambda expres-
sions allow you to create anonymous functions. There is a catch though; the body must
be a single expression, which is also the return value of the function.

One other difference between using the def keyword and lambda expressions we would
like to point out is that def is a statement, while lambda is an expression. Evaluating
a def statement will have a side effect, namely it creates a new function binding in the
current environment. On the other hand, evaluating a lambda expression will not change
the environment unless we do something with the function created by the lambda. For
instance, we could assign it to a variable or pass it as a function argument.

1. What would Python do?

>>> square = lambda x: x * x
>>> def double(f):
... def doubler(x):
... return f(f(x))
... return doubler
>>> foo = double(square)
>>> foo(4)

2. Using a lambda function, complete the make offsetter definition so that it returns
a function. The new function should take one argument and returns that argument
added to some num.

def make_offsetter(num):
"""
Returns a function that takes one argument and returns
num + some offset.

>>> x = make_offsetter(3)
>>> y = make_offsetter(8)
>>> x(2)
5
>>> y(-1)
7
"""
return ________________________________________
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3 Environment Diagrams with Higher Order Functions

Environment diagrams will feature prominently in CS61A, so here is one to try for prac-
tice. Environment diagrams can help you understand difficult coding problems, and also
give you an idea of what’s happening inside the interpreter.

1. Draw the environment diagram for the following code. What is x’s value?

>>> a, b = 2, lambda x: x * 4
>>> def foo(bar, cond):
... if cond:
... return bar(a)
... return b(a)
>>> x = foo(b, True)
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2. Draw the environment diagram for the following code:

>>> from operator import add
>>> def curry2(f):
... return lambda x: lambda y: f(x, y)
>>> make_adder = curry2(add)
>>> add_three = make_adder(3)
>>> five = add_three(2)
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4 Currying

We can transform multiple-argument functions into a chain of single-argument, higher
order functions by taking advantage of lambda expressions. This is useful when dealing
with functions that take only single-argument functions. We will see some examples of
these later on.

1. Write a higher order function rev curry2 that reverses the order of the arguments
of a curried function.

def rev_curry2(f):
"""
Return a curried version of the given curried function,
with the arguments reversed.

>>> f = rev_curry2(curry2(lambda x, y: x / y))
>>> f(4)(2)
0.5
"""

5 Newton’s Method

Newton’s method is an algorithm that is widely used to compute the zeros of functions.
It can be used to approximate a root of any continuous, differentiable function.

Intuitively, Newton’s method works based on two observations:

• At a point P = (x, f(x)), a root of the function f is in the same direction relative to
P as the root of the linear function L that not only passes through P , but also has the
same slope as f at that point.

• Over any very small region, we can approximate f as a linear function. This is one of
the fundamental principles of calculus.

Starting at an initial guess (x0, f(xo)), we estimate the function f as a linear function L,
solve for the zero (x′, 0) of L, and then use the point (x′, f(x′)) as the new guess for the
root of f . We repeat this process until we have determined that (x′, f(′x)) is a zero of f .

Mathematically, we can derive the update equation by using two different ways to write
the slope of L:
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Let x be our current guess for the root, and x∗ be the point we want to update our guess
to. Let L be the linear function tangent to f at (x, f(x)).

Remember that x∗ is the root of L. So, we know two points L passes through, namely
(x, f(x)) and (x∗, 0).

We can write the slope of L as

L′(x) =
0− f(x)

x∗ − x
=
−f(x)
x∗ − x

(1)

We also know that L is tangent to f as x, so:

L′(x) = f ′(x) (2)

We can equate these to get our update equation:

−f(x)
x∗ − x

= f ′(x)⇒ x∗ = x− f(x)

f ′(x)
(3)

We know f(x), and from calculus, for some very small ε:

f ′(x) =
f(x+ ε)− f(x)

(x+ ε)− x
=

f(x+ ε)− f(x)

ε
(4)

From the above, we get this algorithm:

def approx_deriv(fn, x, dx=0.00001):
return (fn(x+dx)-fn(x))/dx

def newtons_method(fn, guess=1, max_iterations=100):
ALLOWED_ERROR_MARGIN = 0.0000001
i = 1
while abs(fn(guess)) > ALLOWED_ERROR_MARGIN and i <= max_iterations:

guess = guess - fn(guess) / approx_deriv(fn, guess)
i += 1

return guess

We can generalize this idea into a framework known as iterative improvement. Basically,
you start out by guessing a value, and then continuously update the guess until it is a
reasonable approximation of the value we are looking for. Here is an implementation for
iter improve. The update function takes the current guess, and returns an updated
guess. The isdone function also takes the current guess, and returns True if and only if
the current guess is “good enough”, according to some set criterion.
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def iter_improve(update, isdone, guess=1, max_iterations=100):

i = 1
while not isdone(guess) and i <= max_iterations:

guess = update(guess)
i += 1

return guess

def newtons_method2(fn, guess=1, max_iterations=100):
def newtons_update(guess):

return guess - fn(guess) / derivative(fn, guess)
def newtons_isdone(guess):

ALLOWED_ERROR_MARGIN= 0.0000001
return abs(fn(guess)) <= ALLOWED_ERROR_MARGIN

return iter_improve(newtons_update,
newtons_isdone,
max_iterations)

1. Write a function cube root that computes the cube root of the input number x.
(Hint: Use newtons methodwith a function that is zero at the cube root of the input.)

def cube_root(x):

2. Newton’s method converges very slowly (or not at all) if the algorithm happens to
land on a point where the derivative is very small. Modify the implementation that
uses iter improve to return None if the derivative is under some threshold, say
0.001.

def newtons_method2(fn, guess=1, max_iterations=100):
def newtons_update(guess, min_size=0.001):

def newtons_done(guess):

return iter_improve(newtons_update, newtons_done, guess,
max_iterations)
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