HIGHER ORDER FUNCTIONS

COMPUTER SCIENCE 61A

January 30, 2013

Warmup Questions

1. Here is one method to check if a number is prime:

def is_prime(n):

k = 2
while k < n:
if n % k ==
return False
k += 1

return True

How does this function work?

Solution: It checks if the argument, a number n, is prime by checking if it is di-
visible by any number between 1 and itself.

This is a decent way of testing if a number is prime, but looping k all the way to n
might be a bit cumbersome. As a little bonus question, can you think of a better place
to stop?

Solution: The square root of a number. If d divides n, then n/d also divides n. d
and n/d cannot both be greater than /n.




Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 2

Using the is_prime function, fill in the following function, which generates the nth
prime number. For example, the ond prime number is 3, the 5th prime number is 11,
and so on.

def nth prime(n):

Solution:

count, curr =1, 2
while count < n:
curr = curr + 1
if is_prime (curr):
count = count + 1
return curr

. Now, what if we wanted to print a sequence of primes up to the n'" prime. What
would be a simple way to do this?

Solution: Insert a print statement inside the if-statement, so that the prime
numbers are printed as they are discovered.

. The Fibonacci sequence is a famous sequence in mathematics where each term is
generated by adding the two previous terms: 0,1,1,2,3,5,8,13,21, 34,55, ... Using a
while loop, write a function that would find the n'" Fibonacci number. For example,
the 4" number would be 2 and the 6" number would be 5.

def nth fibo(n):

Solution:

count, curr, next =1, 0, 1

while count < n:
curr, next = next, curr + next
count += 1

return curr

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 3

Environment Diagrams

Environment diagrams will feature prominently in CS61A, so here is a simple one to try
for practice. Environment diagrams can help you understand difficult coding problems,
and also give you an idea of what’s happening inside the interpreter.

Write the environment diagram for the following code:

n=>717

def f (x):
return x + 3

def g(f, x):
return f (f(x)*2)

g = g(f, n)

Solution:

Global frame ______afunc Fix)

n

-
7 /’
> func gi(f, x)
fl| o —

-~

o«
23

g
9
f
x |7

Return

23
value

X |7

Return

10
value

x |20

Return

23
value

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 4

Functions

A function that manipulates other functions as data is called a higher order function (HOF).
For instance, a HOF can be a function that takes functions as arguments, returns a function
as its value, or both.

Functions as Argument Values

Suppose we would like to square or double every natural number from 1 to n and print
the result as we go. Using the functions square and double, each of which are functions
that take one argument that do as their name imply; fill out the following:

def square_every_number (n) :

Solution:
i =1
while 1 <= n:
print (square(i))
i+=1

def double_every_ number (n) :

Solution:
i =1
while i1 <= n:
print (double (1))
i +=1

Note that the only thing different about square_every_number and double_every_number
is just what function we call on n when we print it. Wouldn't it be nice to generalize
functions of this form into something more convenient? When we pass in the number,
couldn’t we specity, also, what we want to do to each number < n.

To do that, we can define a higher order function called every. every takes in the func-
tion you want to apply to each element as an argument, and applies it to n natural num-
bers starting from 1. So to write square_every_number, we can simply do:

def square_every_ number (n) :
every (square, n)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 2: HIGHER ORDER FUNCTIONS Page 5
Equivalently, to write double_every number, we can write:

def double_every_number (n) :
every (double, n)

Note: These functions are not pure — as defined below, every will actually print values
to the screen.

Questions

1. Now implement the function every that takes in a function func and a number n,
and applies that function to the first n numbers from 1 and prints the result along the
way:

def every (func, n):

Solution:
i =1
while 1 <= n:
print (func(i))
i +=1

2. Similarly, implement the function keep, which takes in a function condition cond
and a number n, and only prints a number from 1 to n to the screen if it fulfills the
condition:

def keep(cond, n):

Solution:

i =1
while 1 <= n:
if cond(i):
print (i)
i+=1

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 6

Functions as Return Values

This problem comes up often: write a function that, given something, returns a function
that does something else. The key message — conveniently emphasized — is that your
function is supposed to return a function. For now, we can do so by defining an internal
function within our function definition and then returning the internal function.

def my_wicked_ function (blah) :
def my_wicked_helper (more_blah) :

return my_wicked_helper

That is the common form for such problems but we will learn another way to do this
shortly.

Moar Questions

1. Write a function and_add_one that takes a function f as an argument (such that £ is
a function of one argument). It should return a function that takes one argument, and
does the same thing as £, except adds one to the result.

def and_add_one (f) :

Solution:

def foo (x):
return f(x) + 1
return foo

2. Write a function and_add that takes a function £ and a number n as arguments. It
should return a function that takes one argument, and does the same thing as the
function argument, except adds n to the result.

def and_add(f, n):

Solution:

def foo (x):
return f(x) + n
return foo

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 2: HIGHER ORDER FUNCTIONS Page 7
3. The following code has been loaded into the python interpreter:

def skipped(f):
def g():
return f
return g

def composed(f, qg):
def h(x):
return f (g(x))
return h

def added(f, g):
def h(x):
return f (x) + g(x)
return h

def square(x) :
return x=*x

def two (x):
return 2

What will python output when the following lines are evaluated? Write “Error” if
evaluating the line will result in an error.

>>> composed (square, two) (7)

Solution:

4

>>> skipped(added(square, two)) () (3)

Solution:

11

>>> added (square, two) () (3)

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



Di1SCUSSION 2: HIGHER ORDER FUNCTIONS Page 8

Solution:

ERROR

>>> composed (two, square) (2)

Solution:

2

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



DISCUSSION 2: HIGHER ORDER FUNCTIONS Page 9
4. Python represents a programming community, and for things to run smoothly, there
are some standards to keep things consistent. The following is the recommended
style for documentation so that collaboration with other python programmers be-
comes standard and easy. If you're up to it, write your code at the very end, using
accumulate as specified in next week’s homework. We'll cover this more exten-
sively later.:

def identity(x):
return x

def lazy_accumulate (f, start, n, term):
moon
Takes the same arguments as accumulate from next week’s homework and
returns a function that takes a second integer m and
will return the result of accumulating the first n
numbers starting at 1 using f and combining that with
the next m integers.

Arguments:

f - the function for the first set of numbers.

start - the value to combine with the first value 1in
the sequence.

n — the stopping point for the first set of numbers.

term - function to be applied to each number before
combining.

Returns:

A function (call it h) h(m) where m is the number of
additional values to combine.

>>> # The following does

>>> # (1 + 2 + 3+ 4 +5) + (6 + 7+ 8+ 9 + 10)
>>> lazy_accumulate (add, 0, 5, identity) (5)

55

mmn

Solution:

def second_accumulate (m) :
return accumulate(f, start, n + m, term)
return second_accumulate

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang



	Warmup Questions
	Environment Diagrams
	Functions
	Functions as Argument Values
	Questions
	Functions as Return Values
	Moar Questions

