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Topics: Review, Context Switching, Synchronization, Nachos

1 Review

Recall from last time and lecture the major issues associated with threads and concurrency:

1. Efficiency: what is the overhead associated with threads?
This includes both runtime overhead (thread creation and context switching) and implementation
overhead for the operating system designer.

2. Synchronization: how to allow threads to share data safely.
Recall that threads corresponding to the same process share the same address space. Suppose two
threads write to the same shared variable x, each executing the increment x++. This gets translated
to the sequence:

load(regO, x) // read value of x into register
reg0 := reg0 + 1 // increment value
store(reg0, x) // store new value of x.

Suppose now that x is initially 0, and that both threads execute this code simultaneously. It is possible
for them to both read 0 for x and then to store 1 into x, resulting in a final value of 1 rather than the
desired 2. This is known as a race condition. We would like to avoid this from happening by using
synchronization constructs, which we will discuss over the next week or so.

3. Scheduling: how to pick the next thread to run.
Our goals here are to be fair to all threads and minimize the time a thread takes to complete. We will
talk about this in a few weeks.

We’ve already seen some of the efficiency impacts of threads, and we review context switching. Then we
turn our attention to synchronization. Scheduling will wait for a few more weeks.

2 Context Switching

In order to understand exactly how a context switch works, it is useful to look at a simple implementation
of the switch function in figure 1. As input, this function takes in the thread control blocks for both the
source and target thread. (We assume that the source thread has already called the scheduler to determine
which thread gets to run next.) The function saves all the state of the source thread in its TCB, including
the address at which the source is executing (recall the MIPS convention that this is in the $ra register),
then loads the state of the target thread and jumps to its point of execution. This sequence of events is
shown in figure 2.

There are couple of things to point out about the switch function. First, note that it does not save
temporary registers. This is because in the MIPS calling convention, the function that calls switch must
save any temporary registers that it is using, so saving them in the TCB would be redundant. Second, note
that a call to switch is in general slower than a normal procedure call, since it must save all callee-saved
registers. A normal procedure call only has to save those that it clobbers, but in a context switch, there is
no way of knowing which ones the new thread will use.

3 Synchronization

Consider the following piece of code, where x is a shared variable but y is non-shared:



/* SWITCH(oldThread, newThread)

* oldThread - The current thread that was running, where the
* CPU register state is to be saved.
* newThread - The new thread to be run, where the CPU register
* state is to be loaded from.
*/
SWITCH:
sSW $sp, SP($a0) # save new stack pointer
swW $s0, S0($a0) # save all the callee-save registers
sw $s1, S1($a0)
sw $s2, S2($20)
sw $s3, S3($a0)
sw $s4, S4($a0)
sw $s5, S5($a0)
sw $s6, S6($a0)
sw $s7, S7($20)
sSw $fp, FP($a0) # save frame pointer
sW $ra, PC($a0) # save return address
1w $sp, SP($al) # load the new stack pointer
1w $s0, S0($al) # load the callee-save registers
1w $s1, S1($al)
1w $s2, S2($al)
1w $s3, S3($al)
1w $s4, S4($al)
1w $s5, S5($al)
1w $s6, S6($al)
1w $s7, S7($al)
1w $fp, FP($al)
1w $ra, PC($al) # load the return address
jr $ra

Figure 1: The switch call implemented in MIPS assembly. Here, SP, S0, etc. refer to offsets in the TCB.
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Figure 2: Execution of the switch call from thread A to thread B in MIPS.

X =y
print(x)

Suppose that threads A and B execute this code simultaneously, with y = 1 in A and y = 2 is B. The
following is a possible sequence of statements executed:

A: x:=y // x is now 1
--- Context Switch to B ---
B: x:=y // x is now 2
. // some statements
--- Context Switch to A --—-
A: print(x) // 2 is printed out

In this sequence, A prints out the unexpected value 2 to the screen.

Ideally, we would like the result of A’s print statement to be deterministic, by preventing any other
thread from executing the above code while A is. Such a section of code, that only one thread can run at
a time, is called a critical section. The synchronization mechanism we use to restrict access to a critical
section must obey three conditions:

1. Mutual exclusion: only one thread can execute the critical section at a time
2. Progress: one thread must always be allowed to enter the critical section
3. Bounded waiting: a thread should not have to wait indefinitely to enter the critical section

The simplest synchronization construct that satisfies these conditions is the lock. A lock has a single
owner, and two functions, acquire which grants the calling thread ownership of the lock if the lock is
unowned or forces it to wait if it is owned, and release which results in the calling thread losing ownership
of the lock and notifying a thread waiting on the lock. Using a lock, we can rewrite the critical section as
follows, where 1 is a shared lock:



class Lock {
Thread owner;
boolean locked;
Queue waiters;
void acquire() {
if (locked) {
waiters.enqueue (Thread.currentThread());
sleep(); // ignore implementation of this method, assume it works
} else {
locked = true;
owner = Thread.currentThread();
}
}
void release() {
if (Thread.currentThread() '= owner) {
throw new Exception("not lock owner");
} else if (!waiters.isEmpty()) {{
owner = (Thread) waiters.dequeue();
} else {
locked = false;
}

Figure 3: Sample Java implementation of a lock.

acquire(1)
X =y
print(x)
release(1l)

Let’s take a look at one possible lock implementation. A lock needs to keep track of its owner, the threads
waiting on it, and whether or not it is in use. The acquire() code must check if the lock is in use, and
if so, put the current thread to sleep, and if not, grant the current thread ownership of the lock. Figure 3
provides a possible Java implementation.

But does this lock work? Suppose both A and B call acquire() at the same time. Then it is possible
for the following sequence of statements to execute:

A: if (locked) // locked is false, jump to else
A: <jump to else>
Context switch to B ---
if (locked) // locked is false, jump to else
<jump to else>
locked = true; // B obtains lock
.. B enters critical section
--- Context switch to A ——-
A: locked = true; // A obtains lock
. A enters critical section

W W w

Both A and B think they’ve acquired the lock! The acquire () method itself is now a critical section as well.

Synchronization cannot be implemented completely in software and must require some level of hardware
support. Locks are usually implemented using atomic synchronization primitives provided by the hardware.
We look at two, TestAndSet and Swap. For now, we will use these primitives directly to protect a critical
section, though in practice we would use locks or some other higher level construct. The lecture notes contain
a lock implementation using these primitives.



boolean TestAndSet(int x) {
int tmp = x;
x =1;
return tmp == 1;

}

Figure 4: The TestAndSet function.

void Swap(int *x, int *y) { // need pointer access if pass by value
int tmp = *x;
XX = *y;
*y = tmp;

}

Figure 5: The Swap function.

The first synchronization primitive is TestAndSet. Given a variable, TestAndSet sets it to 1 and returns
true if its previous value was 0, and false if it was 1. Figure 4 shows the equivalent operations TestAndSet
execute, though it does them atomically.

Using TestAndSet, we can rewrite our critical section as follows, with k a shared integer:

while (TestAndSet(k))
X =y

print (x)

k :=0 // release k

Suppose A executes this code first. Then k is 0, so TestAndSet (k) returns false, and A enters the critical
section. Now suppose B starts executing the code. Now k is 1, so TestAndSet will keep returning true,
and B will not continue. But once A exits the critical section and resets k to 0, B will continue. Thus this
synchronization implementation works.
Alternatively, we can implement synchronization using Swap. Taking two integers as input, Swap obviously
exchanges the values of the two variables. Figure 5 shows the equivalent operation of the Swap function.
Using Swap, we can rewrite the critical section as follows, with k a shared integer and m unshared:

m:=1

do Swap(k, m) while (m == 1)
X 1=y

print (x)

k := 0 // release k

Again, suppose A executes this code first. Then k is 0, so Swap(k, m) sets k to 1 and m to 0, and A enters
the critical section. Now suppose B starts executing the code. Now k is 1, so Swap will keep setting k to 1
and m to 1, and B will not continue. But once A exits the critical section and resets k to 0, B will continue.
Thus this synchronization implementation also works.

While the above are correct synchronization implementations, they exhibit poor performance as they
require busy waiting. Thread B continually checks whether or not it is safe to enter the critical section,
wasting CPU cycles. This is particularly bad if B is a high priority thread and A is low priority, as B will
hog the CPU not doing any useful work. A better implementation would put B to sleep, and have A wake B
up when it exits the critical section. This is one reason we use higher-level constructs like locks that don’t
use busy waiting.

4 Nachos

For phase 1, you need to understand the following in detail:



e nachos.threads.KThread

e nachos.threads.ThreadedKernel

e nachos.threads.Lock

e nachos.machine.TCB (the interface in detail, and basic understanding of the code)

All your work for this phase is going to be done in the nachos.threads package, so you don’t need to
understand the other packages in any detail. You will need to read and comprehend the above classes. For
this phase, I suggest you start reading at KThread.fork() rather than at Machine.main().

In the Nachos code, youll notice that the kernel does privileged operation on occasion (via a call to
doPrivileged()). There are certain operations that you are not allowed to do, such as creating a Java
thread or use a Java File. Attempting to use them will result in the Nachos SecurityManager crashing
your code. In addition, you cannot use the synchronized keyword, we will grep for it. All synchronization,
thread, and file operation must be done through Nachos.

The interface to and descriptions of the methods you need to understand is in figure 6. The Nachos
machine implements kernel threads on top of Java threads, but it ensures that only one Java thread is
running at a time. The Nachos thread operations are detailed in figure 7.

I recommend you get started on the design for phase 1 immediately. Since we haven’t yet discussed
priority scheduling, I suggest that you delay working on it until later. We haven’t done condition variables
yet either, but much of the project uses them, so read over the lecture notes and the code to teach yourself
how to use them. You should put in a lot of time and thought into the boat problem, as it is likely to be the
hardest part and the most difficult to get correct. We will discuss condition variables, priority scheduling,
and design documents next time.



nachos.machine.* — the internals of the implementation
Not really important to understand how this works, but need to know what the public methods are

Machine.interrupt() .disable()

Disable interrupts, return flag of previous interrupt state
Machine.interrupt() .enable()

Enable interrupts
Machine.interrupt() .restore()

Restore to previously saved flag

TCB.contextSwitch()

Context switch to this TCB. Used internally by KThread, you shouldn’t ever need to call this
TCB.start ()

Used to bootstrap a new TCB; used internally by KThread

nachos.threads.* — what you will be modifying

KThread (Runnable target)

Create a new kernel thread and associate with it the code in target.run()
KThread.setName (String name)

Associate a new name, can be retrieved with getName
KThread.fork()

Fork the given thread - that is, start it running
KThread.yield()

Cause the current thread to yield the CPU
KThread.sleep()

Cause the current thread to block - will be woken up later
KThread.ready ()

Move this thread to the ready queue, i.e. wake it up

Lock.acquire()

Sleep until this lock can be acquired
Lock.release()

Release the lock, and wake waiting thread if any

Figure 6: Interface and description of Nachos thread methods.



Fork (KThread.fork(), executed by parent thread)
1. create new TCB for target thread
2. call TCB.start ()

Thread creation
e TCB.start (), executed by parent thread

1. create new Java thread for target, that runs threadroot ()
2. start Java thread
3. go to sleep

e TCB.threadroot (), executed by child thread

1. wakes previous thread

2. yields (i.e. goes to sleep)
Context switch (TCB.contextSwitch(), executed by previous thread)
1. set current TCB’s state to ready (not running)
2. interrupt next thread (wake it up)
3. go to sleep
Notes:
e Going to sleep implemented using Java wait () method, waking up using notify().
e There is a global variable corresponding to the current TCB.

e Read over this code very carefully: thread A can be running code in Thread B (distinguish between
thread and Thread), so keep track of which thread is running at all times.

Figure 7: Thread operations in Nachos.



