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Topics: Minimax

1 Minimax

Many times when we are writing a machine player for a game, we would like a way of determining the best
possible move for the machine. As a start, we ignore how long it would take to compute such a move. First
we will come up with an algorithm to do so and then optmize it.

One slow way to determine the best possible move is to enumerate all the possible moves. But just
enumerating the next move may not result in the game ending, so we’ll have to recursively generate all
possible moves for each turn until the game is over.

We are most interested in turn-based games. Of course, we can easily decide which move to pick for the
machine during its turn, but we also need to decide what move the opponent will pick during his turn. To
be safe, we assume the opponent is brilliant and will pick the best possible move for himself.

After reaching the end of the game, there are three possible situations: machine win, human win, and
draw. Let’s assign the values 1, —1, and 0, respectively, to these situations. Then a human player will try
to minimize the game score, and the machine player will try to maximize it.

We can trivially score the final boards in our enumeration, but what about intermediate boards between
the current move and the final move? If each player is perfect, the at any particular move, they will choose
a move that will result in a board with the best possible score for them. So we might as well assign the
board at that move the best value out of any of the boards that can result from making the next move.
This is done recursively by starting at the final boards and propogating their values upwards. Figure 1 is an
example using tic-tac-toe.

The minimaz algorithm carries out this simulation, but it only recurses on one subtree at a time. So it
will recursively score the left subtree, then the middle one, then the right one, and return the best of them.

1.1 Evaluation Functions

The minimax game tree grows exponentially with depth, so the algorithm runs in O(2¢) time. Even in tic-
tac-toe, running minimax to completion is very slow. In practice, we stop evaluating after a certain depth.
However, not all boards at that depth will be gameover boards, so we have to come up with some way of
assigning a value to it. We can use continuous instead of discrete values, and then when we think we are
winning, we can assign the board a value between 0 and 1, and when we are losing, we can assign it a value
between —1 and 0. The minimax algorithm will still work fine.

1.2 Simple Pruning

Since the minimax algorithm only examines one subtree at a time, once we find a subtree for which we attain
the best possible score, we no longer have to check the other subtrees.

1.3 Alpha-Beta Pruning

We can do even better than simple pruning, if we keep track of the best score that each player can achieve so
far. We call a the best score the computer can accomplish, and 8 the best score the human can accomplish.
Then if « and § ever converge, we know that continuing to search the current subtree is useless. We always
start a and 3 at —2 and 2 so that some move is always chosen.

It is not immediately clear why we can stop searching when o > 3. We may gain some intuition by
looking at an example. Figure 5 is a game tree for an arbitrary game. The leftmost leaf board is known to
have value 0.3, and the next leaf board value 0.7. When examining the leftmost leaf board, we set 3 = 0.3
since it is the human player’s move, and the new value of [ is less than the start value of —2. Then we move
on to the next leaf board and set o = 0.7. Since « and § have converged, we don’t have to examine any
of that leaf board’s siblings. This is because its parent board must have a value of at least 0.7, because the
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Figure 1: The minimax algorithm applied to a tic-tac-toe game. The computer player is X and the human
O. Blue boards indicate a win for the computer, red for the human. Reverse edges indicate the move chosen
at each point.

computer will only choose a sibling of the second leaf board if its score is greater than 0.7. But since the
human player knows the parent board has value at least 0.7, it will immediately choose the parent board’s
sibling, the first leaf board, since its value at 0.3 is better for the human. Thus the first move we examined
has value 0.3 regardless of whatever values any other leaf boards in that subtree may have.

Even with pruning, the minimax algorithm is still too slow to run to completion. So the search must still
be cut off at some predetermined depth.



Minimax(player)
Let Move be an object corresponding to a move, ScoredMove be an
object corresponding to a Move and its score.
Then:
ScoredMove bestSoFar = new ScoredMove(); // default
ScoredMove result;
// If the game is over, return a fake move and the score
if the state is a draw then:
return new ScoredMove(null, 0);
else if the state is a win for the computer then:
return new ScoredMove(null, 1);
else if the state is a win for the human then:
return new ScoredMove(null, -1);
fi;
// We set scores initially out of range so as to ensure we will
// get a move
if player is computer then:
bestSoFar.score = -2;
else:
bestSoFar.score = 2;
fi;
for each move m do:
perform m;
result = Minimax(next player);
undo m;
if it is computer’s turn and the result is better than the bestSoFar then:
bestSoFar.move = m; // new best move
bestSoFar.score = result.score
else if it is the human’s turn and the result is worse than the bestSoFar then:
bestSoFar.move = m;
bestSoFar.score = result;
fi;
od;
return bestSoFar;

Figure 2: The minimax algorithm.
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Figure 3: Simple pruning. When a winning move is found, the search is immediately terminated.



ABMinimax(player, alpha, beta)
Let Move be an object corresponding to a move, ScoredMove be an
object corresponding to a Move and its score.
Then:
ScoredMove bestSoFar = new ScoredMove(); // default
ScoredMove result;
// If the game is over, return a fake move and the score
if the state is a draw then:
return new ScoredMove(null, 0);
else if the state is a win for the computer then:
return new ScoredMove(null, 1);
else if the state is a win for the human then:
return new ScoredMove(null, -1);
fi;
// We set scores initially out of range so as to ensure we will
// get a move
if player is computer then:
bestSoFar.score = alpha;
else:
bestSoFar.score = beta;
fi;
for each move m do:
perform m;
result = ABMinimax(next player, alpha, beta);
undo m;
if it is computer’s turn and the result is better than the bestSoFar then:
bestSoFar.move = m; // new best move
alpha = bestSoFar.score = result.score
else if it is the human’s turn and the result is worse than the bestSoFar then:
bestSoFar.move = m;
beta = bestSoFar.score = result;
fi;
if alpha >= beta then:
return bestSoFar;
fi;
od;
return bestSoFar;

Figure 4: Minimax with alpha-beta pruning.
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Figure 5: Alpha-beta pruning. When alpha and beta converge, it is useless to continue searching the current
subtree.



