
CS61B, Spring 2003 Discussion #13 Amir Kamil
UC Berkeley 4/14/03

Topics: Graph Algorithms

1 Graph Algorithms

There are many algorithms that can be applied to graphs. Many of these are actually used in the real world,
such as Dijkstra’s algorithm to find shortest paths. We will discuss a few here.

1.1 Topological Sort

Graphs are sometimes used to represent “before and after” relationships. For example, you need to think
through a design for a program before you start coding. These two steps can be represented as vertices, and
the relationship between them as a directed edge from the first to the second.

On such graphs, it is useful to determine which steps must come before others. The topological sort
algorithm computes an ordering on a graph such that if vertex α is earlier than vertex β in the ordering,
there is no path from β to α. In other words, you cannot get from a vertex later in the ordering to a vertex
earlier in the ordering. Of course, topological sort works only on directed acyclic graphs.

The simplest topological sort algorithm is to repeatedly remove vertices with in-degree of 0 from the
graph. The edges belonging to the vertex are also removed, reducing the in-degree of adjacent vertices. This
is done until the graph is empty, or until no vertex without incoming edges exists, in which case the sort
fails.

1.2 Dijkstra’s Algorithm

Graphs are very often used to represent distances between locations, and an obvious necessity is to find
shortest paths between these locations. Dijkstra’s algorithm can be used to compute shortest paths from a
starting vertex to each other vertex. We will discuss first how to compute shortest distances.

Dijkstra’s algorithm is in a class called greedy algorithms. Greedy algorithms work by choosing a local
optimum value at each step. In the case of shortest paths, always choosing the local optimum results in the
global optimum as well.

A starting vertex is chosen, from which all distances will be computed. Each vertex in the graph is
assigned a distance value, initially ∞ for all but the starting vertex, which is given a distance of 0. Then
the vertex with the minimum distance is examined, and any vertices adjacent to the current vertex have
their distances updated to the current vertex’s distance plus the edge between the current and the adjacent
vertex, if this update will reduce that distance value. Then the vertex with the next minimum distance is
examined, and so on.

Computation of the actual path is not much harder. Each vertex keeps track of a back edge. When a
vertex’s distance is updated, the back edge is set to be an edge between that vertex and the vertex that
caused the update. Then to get the path between a vertex α and the starting vertex, follow the back edges
from α back to the start. The path from the start to α is the reverse of this.

1.3 Minimum Spanning Trees

Another useful question about weighted graphs is to find which edges in the graph must remain such that
the graph is connected, but the total amount of weight in the remaining edges is minimized. Such a result
is called a minimum spanning tree (MST). The two algorithms to compute MSTs are Kruskal’s algorithm
and Prim’s algorithm.

1.3.1 Kruskal’s Algorithm

Kruskal’s algorithm is straightforward. The vertices are separated into individual sets, and the edges ordered
by weight. Then each edge is examined in order, and if the two corresponding vertices are in different sets,

1



Vector topologicalSort(Graph g) {
Vector res = new Vector();
while (!g.isEmpty()) {
Vertex v = findNextVertex(g);
if (v == null) {
return null; // sort failed

}
g.remove(v);
res.add(v);

}
return res;

}

Figure 1: Java algorithm for topological sort. The method to find a vertex with no incoming edges is left as
an exercise.

Figure 2: A topological sorting of a graph.

Edge[] Dijkstra(Graph g, Vertex s):
Construct an array D[] with one cell for each vertex in g;
Construct an array of edges E[] with one cell for each vertex in g;
Set D[s] = 0 where s is the starting vertex;
Set D[u] = (really big) for all vertices u except the starting vertex;
Construct a min priority queue P containing each node n, with D[n] as its priority;
while P is not empty do:
v = P.removeMinElement();
for each vertex z still in P adjacent to v do:
if D[v] + w(v, z) < D[z] then:
D[z] = D[v] + w(v, z);
E[z] = edge(v, z);
Reorder P according to the new priorities D[];

fi;
od;

od
return E;

Figure 3: Dijkstra’s algorithm. w(v, z) above refers to the weight of the edge connecting v and z.

2



3



Figure 4: Dijkstra’s algorithm applied to a graph, starting at node 1.

4



Tree Kruskal(Graph g):
For each vertex in g, create a set with that vertex in it;
Construct a min priority queue P containing all edges (u, v), with their weights as priorities;
Construct an empty tree T;
while T does not contain all the vertices in g do:
E = P.removeMinElement().
if E.u and E.v are not in the same set then:
Add E to T;
Merge the sets containing E.u and E.v;

fi;
od;
return T;

Figure 5: Kruskal’s algorithm for computing MSTs.

Tree Prim(Graph g, Vertex s):
Construct an empty tree T;
Construct an array D[] with one cell for each vertex in g;
Construct an array of edges E[] with one cell for each vertex in g;
Set D[s] = 0 where s is the starting vertex;
Set D[u] = (really big) for all vertices u except the starting vertex;
Construct a min priority queue P containing each node n, with D[n] as its priority;
while P is not empty do:
v = P.removeMinElement();
add v and E[v] to T;
for each vertex z still in P adjacent to v do:
if w(v, z) < D[z] then:
D[z] = w(v, z);
E[z] = edge(v, z);
Reorder P according to the new priorities D[];

fi;
od;

od
return T;

Figure 6: Prim’s algorithm. w(v, z) above refers to the weight of the edge connecting v and z.

the two sets are combined and the edge added to the result tree. Since the algorithm always chooses the
minimum-weight edge between two portions of the graph, the result is a minimum spanning tree.

1.3.2 Prim’s Algorithm

Prim’s algorithm is another greedy algorithm, this time to find minimum spanning trees. Instead of always
choosing the global optimal edge like Kruskal’s algorithm, it always chooses the local optimal edge. It turns
out that this will also result in a minimum spanning tree, though not necessarily the same one.

The actual algorithm is almost identical to Dijkstra’s algorithm. The only difference is that distances are
updated to only the weight of an edge between vertices, not the sum of the weight and the previous vertex’s
distance. The back edges compose the minimum spanning tree.

1.4 Cycle Detection

Cycle detection on a graph is a bit different than on a tree due to the fact that a graph node can have
multiple parents. On a tree, the algorithm for detecting a cycle is to do a depth first search, marking nodes

5



6



Figure 7: Kruskal’s algorithm applied to a graph.

7



8



9



Figure 8: Prim’s algorithm applied to a graph.

Figure 9: An acyclic graph on which the tree cycle detection algorithm would fail.

as they are encountered. If a previously marked node is seen again, then a cycle exists. This won’t work on
a graph. The graph in figure 9 will be falsely reported to have a cycle, since node C will be seen twice in a
DFS starting at node A.

The cycle detection algorithm for trees can easily be modified to work for graphs. The key is that in a
DFS of an acyclic graph, a node whose descendants have all been visited can be seen again without implying
a cycle. However, if a node is seen a second time before all of its descendants have been visited, then there
must be a cycle. Can you see why this is? Suppose there is a cycle containing node A. Then this means
that A must be reachable from one of its descendants. So when the DFS is visiting that descendant, it will
see A again, before it has finished visiting all of A’s descendants. So there is a cycle.

In order to detect cycles, we use a modified depth first search called a colored DFS. All nodes are initially
marked white. When a node is encountered, it is marked grey, and when its descendants are completely
visited, it is marked black. If a grey node is ever encountered, then there is a cycle.

10



boolean containsCycle(Graph g):
for each vertex v in g do:
v.mark = WHITE;

od;
for each vertex v in g do:
if v.mark == WHITE then:
if visit(g, v) then:
return TRUE;

fi;
fi;

od;
return FALSE;

boolean visit(Graph g, Vertex v):
v.mark = GREY;
for each edge (v, u) in g do:
if u.mark == GREY then:
return TRUE;

else if u.mark == WHITE then:
if visit(g, u) then:
return TRUE;

fi;
fi;

od;
v.mark = BLACK;
return FALSE;

Figure 10: Cycle detection algorithm.

11


