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Topics: Quantum Bits

1 Quantum Bits

1.1 Introduction

As a concrete example of probability, we know take a look the building blocks of a quantum computer, the
quantum bit. Recall that a classical bit can be in one of two states, either 0 or 1. A quantum bit can also be
in one of these two states, but it can also be in a superposition of these states as well.

Before we continue, let me introduce some notation that will facilitate our discussion. The notation [)
is used to denote a quantum state and is called the wave function of the state, and the states corresponding
to the classical 0 and 1 are written as |0) and |1). Then a quantum bit can be in any state |¢)) = «|0) + 5]1),
where! o + 32 =1.

Now consider a system of two bits. Classically, they can be in one of the four states 00, 01, 10, and 11.
Quantumly, they can be in any of these states or in a superposition of these states, |¢)) = «|00) + 5]01) +
v|10) + 6|11), where o + 3 + 42 + 6% = 1.

This is easily generalized into our first rule for quantum bits.

Rule 1: A system of quantum bits can be in any (properly normalized) superposition of the classical states of
the system. In other words the state of a quantum system is |1) = >, a;|i), where the |i)’s are the classical
states and Y, a? = 1.

For those of you familiar with linear algebra, the classical states form the basis of a type of vector space
called a Hilbert space, and the state of a quantum system can be any normalized vector in this space. The
classical states are thus more generally called basis states of the system?.

What does it mean for a quantum bit to be in a superposition of states? Physically, when you measure
some physical property of a qubit, you always get a quantity that corresponds to a basis state3. For example,
measuring the energy of a qubit 1)) = a|0) 4+ B|1) results in Ey, the energy of the state |0), with probability
o?, and in E; with probability 42 (hence the normalization constraint above).

Thus the second rule for quantum bits is the following.

Rule 2: A measurement on a quantum system in a superposition |1) = >, ;i) results in a value con-
sistent with state |i) with probability o?.

As a concrete example, consider a quantum bit implemented physically as a hydrogen atom. Let |0)
correspond to the atom being in the ground state, and |1) correspond to the atom being in the first excited

state. Then consider a qubit in the state |¢) = %|O> + \/g|1> Suppose we measure the energy of this qubit.

What result will we get? We will get Ey = —13.6 eV with probability (%)2 = %7 and E; = —3.4 eV with

Mn actuality, « and B can be complex. Thus the normalization requirement is |a|? + |8]2 = 1. But we will ignore the
possibility of complex coefficients.

2Tt is actually somewhat specific to qubits that the classical states are also the basis states for the system. For example,
consider the z-component of the spin of an electron. Classically, it can take on any value, but quantumly, it can only be +%

or 7%, These two states are the basis states for the z-component of an electron’s spin. In general, it is the eigenstates of a
particular Hamiltonian (energy operator) that form the basis states of a system.
3Tt is possible for a state to be an eigenstate of one physical property but not of another. However, in our discussion we will

assume that the classical states are eigenstates of all the properties that we are measuring.



probability % Note that we will never measure anything except these two values?.

What does all this have to do with CS707 Well, notice that the state of a quantum system defines a
probability space for the results of a measurement on the system. In the example above, the probability
space consists of two points, measuring Ey with probability % and measuring F; with probability % As a
result, we can do all of our probability calculations with quantum systems.

1.2 Conditional Probability

Suppose we have a system of two qubits 1)) = «|00) + 3|01) +~|10) + §|11). Suppose we measure the energy
of the first qubit and get a value of Ey. Now if we measure the energy of the second qubit, what values can
we get and with what probabilities?

This is just a conditional probability calculation®. Let A be the event that we measure Ey for the first
qubit, B be the event that we measure Ej for the second qubit, and C' be the event that we measure E; for
the second qubit. We want to calculate Pr[B|A] and Pr[C|A].

Now we see that the states |00) and |01) are consistent with measuring Fy for the first qubit, so Pr[A] =

a? + 32. State |00) is consistent with A N B, so Pr[A N B] = «?. Similarly, Pr[A N C] = $%. Thus
2
Pr[B|A] = 5%5z, and Pr[C|A] = #52 Notice that the probabilities sum to 1, as they should.
What if instead of measuring the energy of the second qubit, we had left the system alone after measuring

the first qubit. What state would the system be in? Well, since Pr[A|A] = 1, we would require it to be

composed only of basis states with the first qubit being 0. And since Pr[B|A] = 757, and Pr[C[A4] = 09574.2527
we would require it to be composed of states with the second qubit 0 and 1 in such a proportion as to generate

these probabilities. The state
o p

101)

satisfies these requirements.
The general rule that results in the above state is the following.

Rule 3: A measurement on a state |¢) removes all elements of the state that are inconsistent with the
result of the measurement. In other words, a measurement on a state |1)) = >, ;i) results in a state

W) =32, Fi), where the |j)’s are the states consistent with the measurement, and N = /3>, a5 to pre-

serve normalization.

As a simple example, suppose we have a state |¢) = %|O) + §|1>, and we measure the energy of the
state to be Fy. What is the resulting state? Well, only |1) is consistent with this outcome, so the final state

is [v) = 2/, /310) = |1).

This rule has an unfortunate consequence. Suppose we have a state in an unknown superposition
|) = a|0) + B]1). Can we determine the values of o and 57 No, since a measurement would destroy
the superposition®. Worse, we can’t even make copies of the state and measure each one, due to the No-
Cloning theorem. The best we can do is repeat the construction of the state from scratch many times, and
the measure each one to come up with some sort of histogram from which we can extrapolate the original
state.

On the other hand, the rule can be used to our advantage, and is a key part of the quantum factoring
algorithm.

4Well, in this case this is a simplification, since we are ignoring the existence of the other excited states.

5Well, this is actually a bit of a stretch. We are really making two distinct measurements here. Conditional probability
would only apply for a single measurement. However, it just so happens that quantum physics works in such a way that this
analysis works for multiple measurements as well. In reality, this follows from rule 3, instead of rule 3 following from this fact.

6An exception to this is when we measure a property of which this superposition is an eigenstate. But it is impossible to
know that it is an eigenstate beforehand.



1.3 Expectation

As noted above, we can reconstruct an unknown quantum state multiple times, and then measure energy,
for example, in order to come up with some average. This average is called the expectation of the energy of
the system.

For a quantum state in the superposition [¢)) = >, a;i), the expectation of a quantity X is E[X]| =
>, a? x X;, where X; is the value of X in state [i).

For example, consider the hydrogen atom state [i) = % |0)+ \/g |1) from above. What is the expectation

of energy in this state? It is E[E] = £ x Eg+ 2 x By = £ x (—=13.6 eV) + Z x (=3.4 eV) = —6.8 eV. Notice
that the expectation is a different value than the actual possible outcomes of an energy measurement! This
is true of expectations in general, since an average of a set of numbers may be different than the value of
any number in the set.

Consider now a system of two hydrogen atoms in the state |¢)) = %\OO) + %|01> + %\10) + %|11>.
What is the expectation of energy for this state? First note that Fog = 2% Ey = —27.2 €V, Eyp; = E1g =
Ey+ E; = —17 eV, and Ey; = 2% E; = —6.8 V. Thus the energy expectation is E[E] = % X Fgog + % X
Eopn+§xErg+ 3 x Eip =4 x (—272eV) + £ x (—17eV) + § x (—6.8 eV) = —17 eV.

Notice that in this case, the expectation has the same value as the states |01) and |10). Thus by using
the expectation of energy alone, it is impossible to distinguish the three states |¢), |01), and |10). What
we need is some measure of the spread in the distribution of energy measurements in order to tell which of
these states it is.

1.4 Variance

A simple measure of the spread of a probability distribution is the variance. The variance is the square of a
more common measure of spread, the standard deviation. The variance of a quantity X is defined as

Var[X] = E[X?] — E[X]?.

Consider again the system of two hydrogen atoms |¢) = %|00) + %|01> + ﬁ|10> + %|11>. Let’s
calculate the variance of energy in this state.

First, we calculate E[E?]. We have E[E?] = 1 x E3,+ 4 x E3, + 3 x B} + 2 x E}; = £ x (739.84 eV?) +
3 % (289 eV?) + 1 x (46.24 eV?) = 358.36 eV?

Then Var[E] = E[E?] — E[E]? = 358.36 eV? — 289 eV? = 69.36 V>, and the standard deviation is 8.328.

How does this differ from the basis states [01) and [10)? In both these states, E[E?] = 1 x E3, = 289 eV?,
so Var[E] = 0. Thus we can tell that the above state |1} is not one of these basis states.

But can we differentiate |¢)) from the state [io) = %\00) + %\Ol) + %\11)? It turns out that the
expectation and variance of the total energy is the same in both these states. However, we can distinguish
the states by measuring the energy of just the first atom.

1.5 Wave Functions (Optional)

As an interesting side note, we discuss wave functions in more detail here. What exactly is a wave function?

One interpretation of a wave function is that it contains all that we know about a particular system. We
saw above that the physical significance of the wave function is that it encodes the probabilities of each of
the possible outcomes of a measurement.

But this raises another question. Notice that we said a wave function contains all that we know about
a particular system. Could there be information about the system not contained in the wave function, that
we just don’t know?

In particular, it seems somewhat implausible that a system could exist in a superposition state, and only
make a decision on what basis state to jump into when we make a measurement. Is it possible that the



system has actually decided what basis state it is in, and that we just don’t learn the result of the decision
until we make a measurement?

As a concrete example, consider the state of two qubits [¢p) = %UOO) + |11)). Suppose we make a
measurement, on the first qubit. If it results in a value consistent with 0, then we know the second qubit
must also be 0, since the state collapses to |¢)') = |00). But if it results in 1, then we know the second qubit
must be in 1. Such a state, in which measuring the value of one qubit reduces the possible values for the
other qubits, is called entangled.

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen posed the following thought experiment, the
so-called EPR paradox. Suppose I create a system of qubits in this state |¢)), and send one qubit off in one
direction, and the other in the opposite direction. This can be done in such a way as to preserve the state of
the system. Now I wait until the qubits are very far, say a light-year, apart. I measure the first qubit, and
then immediately afterward, my research assistant measures the second. What possible outcomes for these
measurements are there? Well, according the the wave function, the only possibilities are either both 0 or
both 1.

Consider the case when both results are 0. When did the qubits decide to be in this state? Suppose that
they did when the first measurement was made. But then the first qubit would have to somehow relay the
fact that it chose 0 to the other qubit before the second measurement is made.

But this means that this information would have to be transmitted much faster than the speed of light!
Einstein, Podolsky, and Rosen did not believe that this “spooky action at a distance” could occur, since
relativistic theory restricts the speed of information to be no faster than the speed of light. This principle of
locality dictates that one event cannot influence another simultaneous event that occurs much farther away.
Thus the qubits must have decided what state to collapse into long before the measurement, perhaps when
they were separated. EPR’s solution to the problem was that the wave function is an incomplete description
of reality, that there must be some hidden variables concerning the system that we just don’t know.

What they did not consider, and what John Bell proposed in 1964, was what happens when you do one
particular measurement on one of the qubits, and a different measurement on the other. As an example,
suppose the qubits were represented by electrons. As you may recall from elementary chemistry, electrons
have either spin up or spin down in the z direction, so 0 could correspond to spin up and 1 to spin down.
Now suppose I measure the spin in the z direction on the first qubit, but on the second qubit, I measure
the spin in the x direction? (Since there is no special direction in space, the possible results I should get
are either up or down in the x direction as well. In fact, an electron with either spin up or down but not a
superposition in the z axis is in an equal superposition of up and down in the z axis.)

It turns out that measuring the spins of the two electrons in different directions gives different probability
distributions if you assume that the electrons decided which basis states to be in before the measurement, or
if they wait until the moment of the measurement. Thus by doing this experiment and determining which
of these two results the experiment obeys, we can rule out one theory or the other.

Many such experiments have been done in the past few decades. And all have been inconsistent with
the decision being made before the measurement! Thus it is generally believed” that there are no hidden
variables, and that the wave function is really everything there is to know about a system. The world we
live in is inherently probabilistic and non-local.

1.6 Further Information
1.6.1 Courses

The quantum mechanics courses in the physics department are Physics 137A and 137B. Physics H7C also
introduces quantum mechanics.

CS/Chemistry/Physics 191 is on quantum information science and technology. It teaches enough quan-
tum physics as necessary, and introduces quantum computation.

"Well, other interpretations to quantum mechanics have been proposed, including the somewhat implausible many-worlds
interpretation, but none have gained much of a following among physicists.



1.6.2 Texts
Griffiths’ Introduction to Quantum Mechanics is generally used in Physics 137A and 137B.
The Feynman lectures, volume three, are a good introduction to quantum mechanics, and a much easier

read than Griffiths.
Quantum Computation and Quantum Information by Nielsen and Chuang is an extensive reference on

quantum computing.



