
CS70, Fall 2003 Discussion #7 Amir Kamil
UC Berkeley 10/17/03

Topics: Fingerprinting, Secret Sharing

1 Fingerprinting

Consider the fingerprinting function Fp(x) = x mod p, where p is some large prime. Suppose Alice and
Bob share a large prime p, and Alice wants to send an important but public message m to Bob. In order to
make sure that he receives the correct, she fingerprints the message as follows. She breaks it into n = 3

√
p

bit pieces, then sends each piece along with its fingerprint. When Bob receives the pieces, he computes the
fingerprint and checks against the received fingerprint. If a mismatch occurs, he asks Alice to resend the
piece and its fingerprint.

Now suppose an adversary intercepts the communication, but doesn’t know p. He wants to be able to
change both the pieces of the message and their fingerprints so that Bob receives an incorrect message but
believes he received the right one. Can the adversary do this with success guaranteed? For example, adding
1 to both a piece and its fingerprint works most of the time, but not all the time. Is there a scheme that
always works?

Since the adversary is listening in on the transmission, he learns pairs ai, Fp(ai), where the ai are the n
bit pieces. By the definition of the fingerprinting function, ai ≡ Fp(ai) (mod p), so p divides xi = ai−Fp(ai).
However, xi may be a large multiple of p, and so may be hard to factor. But note that gcd(xi, xj) is also a
multiple of p, and is very likely to be a smaller multiple of p than either xi or xj (it is quite unlikely that
one is a multiple of the other). And then gcd(xi, xj , xk) is an even smaller multiple of p. So by listening to
y pieces of the message, the adversary can compute gcd(x1, x2, · · · , xy), which we expect to either be p or a
small, easily factorable multiple of p.

Thus the adversary can learn p, allowing him to change the message as much as he wants. As a result,
this fingerprinting scheme is insecure. This is why the RSA fingerprinting scheme is a better alternative.

2 Secret Sharing

Suppose I want to encode a secret m using the secret sharing protocol discussed in class: I’ll pick a prime
p > m and a degree k polynomial f(x) such that f(0) ≡ m (mod p). Suppose you know k points on this
polynomial (i.e. you know the value of f(x) mod p for k different x). Do you know any information about
my secret?

Let’s do a concrete example. Suppose I pick p = 11, and a degree 2 polynomial. I tell you that f(6) ≡ 7
(mod 11) and f(7) ≡ 5 (mod 11). Does this tell you anything about my secret?

In order to answer this question, first let’s decide what information you knew before you learned the
value of f(6) and f(7), and what you know now. The only thing you knew before was that my secret is a
value between 0 and 10. What you know now depends on how many degree 2 polynomial satisfy the given
values for f(6) and f(7). In fact, the following degree 2 polynomials all work:

f(x) = 4x2 + x + 0

f(x) = 9x2 + 2x + 1

f(x) = 3x2 + 3x + 2

f(x) = 8x2 + 4x + 3

f(x) = 2x2 + 5x + 4

f(x) = 7x2 + 6x + 5

1



f(x) = 1x2 + 7x + 6

f(x) = 6x2 + 8x + 7

f(x) = 0x2 + 9x + 8

f(x) = 5x2 + 10x + 9

f(x) = 10x2 + 0x + 10.

These polynomials cover all possible values of the secret! And each value has exactly one corresponding
polynomial. Thus you still have no idea what value my secret is, besides that it is between 0 and 10.

Now what if I also told you that f(8) ≡ 7 (mod 11)? Now there is only a single degree 2 polynomial that
satisfies all three points, namely

f(x) = 2x2 + 5x + 4.

Thus my secret is the value 4.
You may be wondering how I came up with the above polynomials. Well, for the first set, I used an

inefficient program to compute them. For the actual correct polynomial, I used the polynomial interpolation
algorithm you proved in your homework. Recall that the polynomial fk(x) = bkFk(x), where Fk(x) =
(x− 0)(x− 1) · · · (x− k + 1)(x− k− 1) · · · (x− 10) and bk = Fk(k)−1 (mod 11), has the value 0 for f(x 6= k)
mod 11 and 1 for f(k) mod 11.

But this isn’t quite what we want. If we interpolated using these polynomials, we’d end up with a
polynomial such that f(x) ≡ 0 (mod 11) for x 6∈ {6, 7, 8}. We need polynomials fk(x) for k ∈ {6, 7, 8}
such that fk(k) ≡ 1 (mod 11) and fk(j) ≡ 0 (mod 11) for j ∈ {6, 7, 8} − {k}, but fk(j) is unforced for
j 6∈ {6, 7, 8}. So the polynomials we are looking for are

f6(x) = b6F6(x), F6(x) = (x− 7)(x− 8), b6 = F6(6)−1 (mod 11)

f7(x) = b7F7(x), F7(x) = (x− 6)(x− 8), b7 = F7(7)−1 (mod 11)

f8(x) = b8F8(x), F8(x) = (x− 6)(x− 7), b8 = F8(8)−1 (mod 11).

Then our desired polynomial is f(x) = f(6)f6(x) + f(7)f7(x) + f(8)f8(x). This polynomial has the correct
values at x = 6, x = 7, and x = 8.

Using the above method, we recover the polynomial f(x) = 2x2 + 5x + 4. Thus the secret is 4.
Now suppose I did not tell you the degree of the polynomial that encodes my secret. How many points

would be required for you to figure out the secret?
In this case, it is impossible for you to figure out the secret. Suppose I pick a degree 100 polynomial, and

carefully choose 10 points to give you such that there is a degree 3 polynomial that satisfies all 10 points.
You can try all possible degrees from 1 to 9, and even if that degree 3 polynomial is the only polynomial in
this range that satisfies the 10 points, you can’t be sure that the polynomial is correct. In fact, in this case
it is not, so you would recover the wrong secret.

2


