
CS70, Fall 2003 Discussion #6 Amir Kamil
UC Berkeley 10/10/03

Topics: Euler’s Theorem, Chinese Remainder Theorem

Consider the following two problems:

1. Compute 2110001111100001

(mod 23).

2. Solve the system of equations:
3x ≡ 5 (mod 7)

2x ≡ 6 (mod 5)

x ≡ 7 (mod 8).

How would we go about answering these questions? For the first problem, even fast exponentiation would
take exponential time. For the second, we could use guess and check, but that quickly becomes intractable
for larger problems. In this section, we will see how to solve both problems systematically and efficiently.

1 Euler’s Theorem

In class, we saw Fermat’s little theorem, which states that ap−1 ≡ 1 (mod p) when p is prime and a and p
are relatively prime. In addition, we saw a generalization to products of 2 primes, a(p−1)(q−1) ≡ 1 (mod pq).
Is there a generalization for any n?

The generalization does exist, and relies on Euler’s totient function, φ(n). This function is the number
of positive integers less than n that are relatively prime to n (with 1 relatively prime to n by definition. For
example, φ(10) = 4, since 1, 3, 7, and 9 are relatively prime to 10. For a prime number p, φ(p) = p− 1 since
all positive integers less than p are relatively prime to it.

Let’s attempt to compute φ(n) for general n = pq where p and q are distinct primes. Notice that the values
p, 2p, · · · , (q−1)p, q−1 values total, are not relatively prime to n. In addition, the values q, 2q, · · · , (p−1)q,
p−1 values total, are also not relatively prime to n. These cover all the positive integers not relatively prime
to n, so the number relatively prime to n is n − 1 − (p − 1) − (q − 1) = pq − p − q + 1 = (p − 1)(q − 1).
Thus φ(pq) = (p − 1)(q − 1). The generalization for a product of k distinct primes n = p1p2 · · · pk is
φ(n) = (p1 − 1)(p2 − 1) · · · (pk − 1).

What is φ(n) for n a product of non-distinct primes? Let’s try it for an n that has only two prime factors
p and q. Then the values less than n that are not relatively prime to n are p, 2p, · · · , (n

p −1)p, and the values
q, 2q, · · · , (n

q − 1)q, n/p + n/q − 2 values total. But we’ve overcounted, since we counted multiples of pq

(pq, · · · , (n
pq −1)pq) twice. Thus φ(n) = n−1− n

p −
n
q +2+ n

pq −1 = 1
pq (npq−nq−np+n) = n

pq (p−1)(q−1).
For a general n with prime factors p1, p2, · · · , pk, φ(n) = (p1 − 1)(p2 − 1) · · · (pk − 1) n

p1p2···pk
.

Then Euler’s theorem states that if gcd(a, n) = 1, aφ(n) ≡ 1 (mod n). We can see that this reduces to
Fermat’s theorem when n is prime, and a(p−1)(q−1) ≡ 1 (mod n) when n = pq is a product of two primes.

We can prove Euler’s theorem using Fermat’s theorem and the Chinese remainder theorem. Let’s do the
case where the modulus n is a product of k distinct primes n = p1p2 · · · pk. Then φ(n) = (p1 − 1)(p2 −
1) · · · (pk − 1). Now consider aφ(n), where a and n are relatively prime. From Fermat’s theorem, we know
that aφ(n) = a(p1−1)···(pi−1)···(pk−1) = (api−1)(p1−1)···(pi−1−1)(pi+1−1)···(pk−1) ≡ 1 (mod pi) for each i. Now we
have a set of k equations, so we can apply the Chinese remainder theorem. Trying the solution aφ(n) ≡ 1
(mod n), we see that it works, and by the Chinese remainder theorem, it is the unique solution.

Using Euler’s theorem, we can reduce ak modulo n, if a and n are relatively prime. Let k′ = k mod φ(n),
then k = mφ(n) + k′ for some integer m. Then ak = amφ(n)+k′ = (aφ(n))mak′ ≡ ak′ (mod n), using Euler’s

1

theorem in the last step. Thus ak ≡ ak mod φ(n) (mod n). We can use this fact to do blindingly fast
exponentation1.

Going back to problem 1, we see that 2110001111100001 ≡ 2(110001111100001 mod 22) (mod 23). Applying Eu-
ler’s theorem again, 110001111100001 ≡ 110001(111100001 mod 10) (mod 22). Again, 111100001 ≡ 11(1100001 mod 4) ≡
111 ≡ 1 (mod 10). Then 110001111100001 ≡ 110001(111100001 mod 10) ≡ 1100011 ≡ 1 (mod 22). Finally,

210001111100001 ≡ 2(110001111100001 mod 22) ≡ 21 ≡ 2 (mod 23). Can you see how this algorithm is blindingly
fast?

Of course, in order to do blindingly fast exponentiation, we must be able to compute the totient function
efficiently. So the question of the day is, is it possible to compute φ(n) in polynomial (in lg n) time?

Let’s assume for the moment that we can compute the totient function, and see where that takes us.
Consider n = pq, where p and q are prime. Let φ(n) = k. Then, since φ(n) = (p − 1)(q − 1), we have the
system of equations

(p− 1)(q − 1) = k

pq = n,

where p and q are unknown, and k and n are known. Solving the second for q and substituting into the
first, we get (p − 1)(n/p − 1) = k. Multiplying the left side out and then the equation by p, we get
pn− n− p− p2 = kp. Rearranging, we get p2 + (k− n + 1)p + n = 0. Using the quadratic formula, we solve

for p to get p = −(k−n+1)±
√

(k−n+1)2−4n

2 . Thus, we can solve for p and q, using the value of φ(n).
But this means we’ve factored n! And since RSA encryption depends on a product of two primes not being

efficiently factorable, we’ve broken the encryption protocol. Since this contradicts the RSA assumption, it
is safe to assume that computing the totient function is intractable.

2 Chinese Remainder Theorem

The Chinese remainder theorem states that a set of equations

x ≡ a (mod p)

x ≡ b (mod q),

where p and q are relatively prime, has exactly one solution modulo pq. But it gives no clue on how to solve
the system of equations. Here, we see how to solve these equations systematically.

Since you will write an algorithm to solve such a set of equations in the homework, we will only do a
concrete example, problem 2 above. First we reduce the equations to get

x ≡ 4 (mod 7)

x ≡ 3 (mod 5)

x ≡ 7 (mod 8).

Now from the first, we know that x = 7s + 4 for some integer s. Substituting into the second equation, we
get 7s + 4 ≡ 3 (mod 5). Solving for s, we get s ≡ 2 (mod 5), so s = 5t + 2 for some t. Substituting into
x = 7s + 4, we get x = 35t + 18. Now using this in the third equation, we get 35t + 18 ≡ 7 (mod 8). Solving
for t, we get t ≡ 7 (mod 8), so t = 8u+7 for some u. Substituting into x = 35t+18, we get x = 280u+263.
Thus x ≡ 263 (mod 280).

1Also called screaming fast exponentiation.

2

