CS70, Fall 2003 UC Berkeley Discussion #5

Amir Kamil 9/26/03

Topics: Bad Proofs, Modular Arithmetic

1 Bad Proofs

Consider polynomials of the form

$$f(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0,$$

where each A_i is an integer. Such a polynomial is *mystical* if $\forall x \in \mathbf{N}$. $x \ge 1 \implies f(x)$ is prime. For example, f(x) = x + 1 is not mystical since f(3) = 4 is not prime.

Now a Stanford professor claims that any polynomial f(x) where f(0) = 3 cannot be mystical. He gives the following proof:

Claim: $f(0) = 3 \implies f(x)$ is not mystical.

Proof: Consider f(3). Note that f(3) is an integer, since f(x) has integer coefficients. Since f is a polynomial, we may write it as $f(x) = A_n * x^n + \cdots + A_1 * x + A_0$. Then $f(0) = A_n * 0^n + \cdots + A_1 * 0 + A_0$, so if f(0) = 3, we must have $A_0 = 3$. Moreover, we may calculate

$$f(3) = A_n * 3^n + \dots + A_1 * 3 + 3$$

$$\equiv A_n * 0^n + \dots + A_1 * 0 + 0 \pmod{3}$$

$$\equiv 0 + \dots + 0 \pmod{3}$$

$$\equiv 0 \pmod{3}$$

which means that 3 is a divisor of f(3). Consequently, f(3) cannot be prime, which implies that f is not mystical.

Is there anything wrong with this proof¹?

Before we look at his proof, let's first decide whether or not his claim is true. Is it true that f(0) = 3 means that f(x) is not mystical? No, it doesn't, since f(x) = 3 satisfies f(0) = 3 and is mystical. Since the professor's claim is false, and his proof purports to prove it, there must be an error in his proof.

A close examination of the proof reveals that the Stanford professor used the justification $\exists p \in \mathbf{N}$. $p \mid n \implies n$ is not prime (here, the | symbol means *evenly divides*). But consider the case where the only such p is p = n. Does this mean n is not prime? Of course not, since primes are always divisible by themselves. The attempt to use this false justification is the error in the proof.

2 Modular Arithmetic

The building blocks of modular arithmetic are *congruency* relations, just like equality relations for normal arithmetic. Congruency can be defined in multiple equivalent ways. One definition is

$$a \equiv b \pmod{m} \iff m \mid (|a - b|),$$

where $a \equiv b \pmod{m}$ means a is congruent to b modulo m. The second definition is

$$a \equiv b \pmod{m} \iff a \% m = b \% m,$$

where % is the remainder operation.

Just like with equations, there are certain identities that hold for congruencies. The most important ones are as follows:

¹This question was taken from a midterm from Fall 2001. Infer from that what you will.

1. $a \equiv b \pmod{m} \implies a + c \equiv b + c \pmod{m}$ 2. $a \equiv b \pmod{m} \implies a \cdot c \equiv b \cdot c \pmod{m}$ 3. $a \equiv b \pmod{m} \land b \equiv c \pmod{m} \implies a \equiv c \pmod{m}$

Note that there is no rule for division that holds for congruencies.

These rules mean that it is possible to reduce each term in a congruency individually, modulo the base. Consider the equation $7x + 10^{2003} \equiv 0 \pmod{m}$. Since $7 \equiv 1 \pmod{m}$, we can replace the 7 with 1. And since $10 \equiv 1 \pmod{m}$, we can replace the 10 with 1 in the congruency. Thus

 $7x + 10^{2003} \equiv 2 \pmod{m} \longrightarrow x + 1^{2003} \equiv 2 \pmod{m} \longrightarrow x + 1 \equiv 2 \pmod{m} \longrightarrow x \equiv 1 \pmod{m}.$

Note that it is not legal to reduce the exponent 2003. It is legal to reduce the base, since $10^{2003} = 10 \cdot 10 \cdots 10$, and we can reduce each 10 individually by applying rule 3 from above. But no application of the above rules can be used to reduce exponents.

As with equations, we can solve systems of congruencies. Consider the set of congruencies

1. $10x + 2y \equiv 3 \pmod{11}$

2.
$$x + y \equiv 5 \pmod{11}$$
.

We use many of the same techniques of solving equations with congruencies, keeping in mind that we can't divide a congruency by any number. Multiplying equation² #2 by -2, we get $-2x - 2y \equiv -10 \pmod{11}$. Then adding this to equation 1, we get $12x \equiv -7 \pmod{11}$. Now we can reduce 12 to 1, and -7 to 4, to get $x \equiv 4 \pmod{11}$. Substituting into equation #2 and subtracting 4 from each side, we get $y \equiv 1 \pmod{11}$. Thus the solution to the system is $x \equiv 4 \pmod{11}$ and $y \equiv 1 \pmod{11}$.

But now consider the set of congruencies

$$1. 5x + 2y \equiv 3 \pmod{11}$$

2.
$$x + y \equiv 5 \pmod{11}$$
.

Eliminating y, we end up with the equation $3x \equiv 4 \pmod{11}$. Now how do we eliminate the 3 on the left side? Notice that if we multiply 3 by 4, we get 12, which can be reduced to 1. So if we multiply $3x \equiv 4 \pmod{11}$ by 4, we get $12x \equiv 16 \pmod{11}$, which reduces to $x \equiv 5 \pmod{11}$. Solving for y, we get $y \equiv 0 \pmod{11}$.

Since the product of 3 and 4 reduces to 1 modulo 11, 3 and 4 are *inverses* modulo 11. By multiplying an equation of the form $ax \equiv b \pmod{m}$ by the inverse of a, written as a^{-1} , we get $a^{-1}ax \equiv a^{-1}b \pmod{m}$, or $x \equiv a^{-1}b \pmod{m}$, a solution to the equation.

We saw in lecture that an inverse of a modulo m exists if gcd(a,m) = 1. Now we will see an informal proof that if $gcd(a,m) \neq 1$, a has no inverse modulo m. First we prove the following lemma:

Lemma 5.1: $a \equiv kp \pmod{m}$, where $p \mid a, p \mid m$, and $0 \leq kp < m$.

Proof: We know that p divides a and m, so a = cp and m = dp for some integer c and d. Thus $a \equiv cp \pmod{m}$. Now we can always subtract multiples of m from one side of a congruency, so $a \equiv cp - nm \pmod{m}$, where n is some integer, or $a \equiv (c - nd)p \pmod{m}$. Now in order for $0 \leq (c - nd)p < m$, it must be that $0 \leq c - nd < d$ for some n. Thus $c/d - 1 < n \leq c/d$. This is satisfied by $n = \lfloor c/d \rfloor$. Thus, if we choose this n, we have $a \equiv kp \pmod{m}$, where $k = (c - \lfloor c/d \rfloor p)$, and $0 \leq kp < m$.

Now we prove the following:

Theorem 5.2: $\forall b \in \mathbb{Z}$. $gcd(a, m) \neq 1 \implies ab \neq 1 \pmod{m}$. **Proof:** Let $gcd(a, m) = p, p \neq 1$. Consider an arbitrary *b*. Then $p \mid ab$. From lemma 5.1, $ab \equiv kp \pmod{m}$, where $0 \leq kp < m$. Now it is impossible for kp = 1 for any integer *k*. Thus $ab \not\equiv 1 \pmod{m}$ for any *a*.

 $^{^{2}}$ Notice my terminology getting sloppy here. Don't expect much of a distinction to be made between the terms *equation* and *congruency*.

As a final exercise, consider the following function³: f(x) = the sum of the cubes of each digit in x. In other words, if $x = A_k A_{k-1} \cdots A_0$, where the A_i are the digits of x, $f(x) = A_k^3 + A_{k-1}^3 + \cdots + A_0^3$. Now prove that $f(x) \equiv x \pmod{3}$ for all $x \in \mathbb{N}$.

Writing x in terms of its digits, we have $x = A_k \cdot 10^k + A_{k-1} \cdot 10^{k-1} + \dots + A_1 \cdot 10 + A_0$. Working modulo 3, we can reduce each 10 to 1, to get $x \equiv A_k + A_{k-1} + \dots + A_0 \pmod{3}$. Now in order for $f(x) \equiv x \pmod{3}$, we require that $A_k^3 + A_{k-1}^3 + \dots + A_0^3 \equiv A_k + A_{k-1} + \dots + A_0 \pmod{3}$. This is satisfied if each $A_i^3 \equiv A_i \pmod{3}$. So it suffices to prove that $n^3 \equiv n \pmod{3}$ for all naturals n.

Now since any natural n can be reduced to either 0, 1, or 2, so it is sufficient to prove that $n^3 \equiv n \pmod{3}$ for $n \in 0, 1, 2$. We can just enumerate all three cases. We have $0^3 = 0 \equiv 0 \pmod{3}$, $1^3 = 1 \equiv 1 \pmod{3}$, and $2^3 = 8 \equiv 1 \pmod{3}$. Thus $n^3 \equiv n \pmod{3}$ for all naturals n.

and $2^3 = 8 \equiv 1 \pmod{3}$. Thus $n^3 \equiv n \pmod{3}$ for all naturals n. Thus, since each digit of a natural number is positive, we can reduce $A_k^3 + A_{k-1}^3 + \cdots + A_0^3 \mod 3$ term by term, using the fact that $n^3 \equiv n \pmod{3}$, to get $A_k + A_{k-1} + \cdots + A_0$, completing our proof.

³This was also taken from a midterm from Fall 2001.