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Topics: Bad Proofs, Modular Arithmetic

1 Bad Proofs

Consider polynomials of the form

f(x) = Anxn + An−1x
n−1 + · · ·+ A1x + A0,

where each Ai is an integer. Such a polynomial is mystical if ∀x ∈ N. x ≥ 1 =⇒ f(x) is prime. For
example, f(x) = x + 1 is not mystical since f(3) = 4 is not prime.

Now a Stanford professor claims that any polynomial f(x) where f(0) = 3 cannot be mystical. He gives
the following proof:

Claim: f(0) = 3 =⇒ f(x) is not mystical.
Proof: Consider f(3). Note that f(3) is an integer, since f(x) has integer coefficients. Since f is a polyno-
mial, we may write it as f(x) = An ∗ xn + · · ·+ A1 ∗ x + A0. Then f(0) = An ∗ 0n + · · ·+ A1 ∗ 0 + A0, so if
f(0) = 3, we must have A0 = 3. Moreover, we may calculate

f(3) = An ∗ 3n + ... + A1 ∗ 3 + 3

≡ An ∗ 0n + ... + A1 ∗ 0 + 0 (mod 3)

≡ 0 + ... + 0 (mod 3)

≡ 0 (mod 3)

which means that 3 is a divisor of f(3). Consequently, f(3) cannot be prime, which implies that f is not
mystical.

Is there anything wrong with this proof1?
Before we look at his proof, let’s first decide whether or not his claim is true. Is it true that f(0) = 3

means that f(x) is not mystical? No, it doesn’t, since f(x) = 3 satisfies f(0) = 3 and is mystical. Since the
professor’s claim is false, and his proof purports to prove it, there must be an error in his proof.

A close examination of the proof reveals that the Stanford professor used the justification ∃p ∈ N. p |
n =⇒ n is not prime (here, the | symbol means evenly divides). But consider the case where the only such
p is p = n. Does this mean n is not prime? Of course not, since primes are always divisible by themselves.
The attempt to use this false justification is the error in the proof.

2 Modular Arithmetic

The building blocks of modular arithmetic are congruency relations, just like equality relations for normal
arithmetic. Congruency can be defined in multiple equivalent ways. One definition is

a ≡ b (mod m) ⇐⇒ m | (|a− b|),

where a ≡ b (mod m) means a is congruent to b modulo m. The second definition is

a ≡ b (mod m) ⇐⇒ a % m = b % m,

where % is the remainder operation.
Just like with equations, there are certain identities that hold for congruencies. The most important ones

are as follows:
1This question was taken from a midterm from Fall 2001. Infer from that what you will.
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1. a ≡ b (mod m) =⇒ a + c ≡ b + c (mod m)

2. a ≡ b (mod m) =⇒ a · c ≡ b · c (mod m)

3. a ≡ b (mod m) ∧ b ≡ c (mod m) =⇒ a ≡ c (mod m)

Note that there is no rule for division that holds for congruencies.
These rules mean that it is possible to reduce each term in a congruency individually, modulo the base.

Consider the equation 7x + 102003 ≡ 0 (mod m). Since 7 ≡ 1 (mod m), we can replace the 7 with 1. And
since 10 ≡ 1 (mod m), we can replace the 10 with 1 in the congruency. Thus

7x + 102003 ≡ 2 (mod m) −→ x + 12003 ≡ 2 (mod m) −→ x + 1 ≡ 2 (mod m) −→ x ≡ 1 (mod m).

Note that it is not legal to reduce the exponent 2003. It is legal to reduce the base, since 102003 = 10·10·· · ··10,
and we can reduce each 10 individually by applying rule 3 from above. But no application of the above rules
can be used to reduce exponents.

As with equations, we can solve systems of congruencies. Consider the set of congruencies

1. 10x + 2y ≡ 3 (mod 11)

2. x + y ≡ 5 (mod 11).

We use many of the same techniques of solving equations with congruencies, keeping in mind that we can’t
divide a congruency by any number. Multiplying equation2 #2 by −2, we get −2x − 2y ≡ −10 (mod 11).
Then adding this to equation 1, we get 12x ≡ −7 (mod 11). Now we can reduce 12 to 1, and −7 to 4, to get
x ≡ 4 (mod 11). Substituting into equation #2 and subtracting 4 from each side, we get y ≡ 1 (mod 11).
Thus the solution to the system is x ≡ 4 (mod 11) and y ≡ 1 (mod 11).

But now consider the set of congruencies

1. 5x + 2y ≡ 3 (mod 11)

2. x + y ≡ 5 (mod 11).

Eliminating y, we end up with the equation 3x ≡ 4 (mod 11). Now how do we eliminate the 3 on the left side?
Notice that if we multiply 3 by 4, we get 12, which can be reduced to 1. So if we multiply 3x ≡ 4 (mod 11)
by4, we get 12x ≡ 16 (mod 11), which reduces to x ≡ 5 (mod 11). Solving for y, we get y ≡ 0 (mod 11).

Since the product of 3 and 4 reduces to 1 modulo 11, 3 and 4 are inverses modulo 11. By multiplying
an equation of the form ax ≡ b (mod m) by the inverse of a, written as a−1, we get a−1ax ≡ a−1b (mod m),
or x ≡ a−1b (mod m), a solution to the equation.

We saw in lecture that an inverse of a modulo m exists if gcd(a,m) = 1. Now we will see an informal
proof that if gcd(a,m) 6= 1, a has no inverse modulo m. First we prove the following lemma:

Lemma 5.1: a ≡ kp (mod m), where p | a, p | m, and 0 ≤ kp < m.
Proof: We know that p divides a and m, so a = cp and m = dp for some integer c and d. Thus
a ≡ cp (mod m). Now we can always subtract multiples of m from one side of a congruency, so a ≡
cp− nm (mod m), where n is some integer, or a ≡ (c− nd)p (mod m). Now in order for 0 ≤ (c− nd)p < m,
it must be that 0 ≤ c− nd < d for some n. Thus c/d− 1 < n ≤ c/d. This is satisfied by n = bc/dc. Thus, if
we choose this n, we have a ≡ kp (mod m), where k = (c− bc/dcp), and 0 ≤ kp < m.

Now we prove the following:

Theorem 5.2: ∀b ∈ Z. gcd(a,m) 6= 1 =⇒ ab 6≡ 1 (mod m).
Proof: Let gcd(a,m) = p, p 6= 1. Consider an arbitrary b. Then p | ab. From lemma 5.1, ab ≡ kp (mod m),
where 0 ≤ kp < m. Now it is impossible for kp = 1 for any integer k. Thus ab 6≡ 1 (mod m) for any a.

2Notice my terminology getting sloppy here. Don’t expect much of a distinction to be made between the terms equation
and congruency.
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As a final exercise, consider the following function3: f(x) = the sum of the cubes of each digit in x. In
other words, if x = AkAk−1 · · ·A0, where the Ai are the digits of x, f(x) = A3

k + A3
k−1 + · · · + A3

0. Now
prove that f(x) ≡ x (mod 3) for all x ∈ N.

Writing x in terms of its digits, we have x = Ak ·10k +Ak−1 ·10k−1 + · · ·+A1 ·10+A0. Working modulo
3, we can reduce each 10 to 1, to get x ≡ Ak +Ak−1 + · · ·A0 (mod 3). Now in order for f(x) ≡ x (mod 3), we
require that A3

k + A3
k−1 + · · ·+ A3

0 ≡ Ak + Ak−1 + · · ·A0 (mod 3). This is satisfied if each A3
i ≡ Ai (mod 3).

So it suffices to prove that n3 ≡ n (mod 3) for all naturals n.
Now since any natural n can be reduced to either 0, 1, or 2, so it is sufficient to prove that n3 ≡ n (mod 3)

for n ∈ 0, 1, 2. We can just enumerate all three cases. We have 03 = 0 ≡ 0 (mod 3), 13 = 1 ≡ 1 (mod 3),
and 23 = 8 ≡ 1 (mod 3). Thus n3 ≡ n (mod 3) for all naturals n.

Thus, since each digit of a natural number is positive, we can reduce A3
k + A3

k−1 + · · · + A3
0 modulo 3

term by term, using the fact that n3 ≡ n (mod 3), to get Ak + Ak−1 + · · ·A0, completing our proof.

3This was also taken from a midterm from Fall 2001.
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